8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды устройств приема и распределения электроэнергии

GardenWeb

Прием и распределение электрической энергии

Источником электроснабжения большинства промыш-_ ленных предприятий обычно являются энергетические системы; в редких случаях предприятия получают энергию от собственных заводских электростанций. Электроснабжение и распределение энергии в пределах предприятия от собственных электростанций производится в основном на генераторном напряжении 6 и 10 кВ.

Большинство предприятий получает питание от районных подстанций, входящих в состав энергосистемы, по линиям электропередачи высокого напряжения через понижающие трансформаторы, установленные на подстанциях потребителя. Электроснабжение предприятий производится через пункты приема и распределения электроэнергии (ГПП, ЦРП, РП и ТП), максимально приближенные к потребителям. Электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы, называется распределительным устройством (РУ).

Распределительные устройства разделяются на открытые ОРУ (все или основное оборудование расположено на открытом воздухе) и закрытые ЗРУ (оборудование расположено в здании), а также комплектные КРУ. Комплектным называется распределительное устройство, состоящее из полностью либо частично закрытых шкафов или блоков с встроенными в них аппаратами, устройствами защиты и автоматики, поставляемое в собранном или полностью подготовленном для сборки виде.

Электроустановку, служащую для преобразования и распределения электроэнергии и состоящую из трансформаторов или других преобразователей энергии, распределительных устройств, устройств управления и вспомогательных сооружений, называют подстанцией. В зависимости от преобладания той или иной функции подстанции разделяются на трансформаторные и преобразовательные.

Подстанция, получающая питание непосредственно от энергетической системы (или заводской электростанции), называется главной понизительной подстанцией (ГПП) предприятия. Распределение энергии на пониженном напряжении от ГПП производится по всему предприятию или его значительной части через цеховые трансформаторные подстанции (ТП), распределительные пункты (РП) и центральные распределительные пункты (ЦРП).

Трансформаторные и преобразовательные подстанции, как и распределительные устройства, изготовляют и поставляют комплектными (КТП, КПП), в собранном или полностью подготовленном для сборки виде.

Выработка, передача и потребление электрической энергии производятся на различных уровнях напряжения. Для электрических сетей общего назначения переменного напряжения частотой 50 Гц и присоединяемых к ним приемников электрической энергии установлены следующие номинальные напряжения: до 1000 В —40, 220, 380 и 660 В; выше 1000 В-(3), 6, 10, 20, 35, 110, (150), 220, 330, 500, 750 и 1150 кВ (напряжения, указанные в скобках, для вновь проектируемых сетей не рекомендуются).

Трансформаторные подстанции

Трансформаторная подстанция представляет собой такой вид электроустановки, который необходим для получения напряжения, а также для повышения или же его понижения в сети переменного тока.

Данная подстанция позволяет необходимым образом распределять электроснабжения различных объектов, таких видов как сельский, поселковый, городской и промышленный.

Комплектные трансформаторные подстанции

Комплектная трансформаторная подстанция состоит из совокупности устройств.

Комплектная трансформаторная подстанция включает в себя:

  • силовой трансформатор, который, в свою очередь, служит для преобразования одной системы переменного тока в другую с целью обеспечения безопасной электроэнергии;
  • электроустановка, служащая для распределения входящей электроэнергии по отдельным цепям, которая называется распределительное устройство;
  • чтобы осуществлялась постоянная поддержка частоты тока на необходимом уровне применяется такой вид устройства, как автоматическое управление;
  • специальных защитных устройств, которые осуществляют полное поддержание подстанции в необходимых рамках и применяются для силовых линий;
  • не менее важную роль имеют вспомогательные сооружения.

Стоит отметить, что в перечень услуг компаний, которые занимаются производством подстанций, входит и обслуживание трансформаторных подстанций.

Типы и виды трансформаторных подстанций

Существуют несколько категорий, которые в полной мере могут охарактеризовать типы трансформаторных подстанций. Чтобы разобраться для чего, собственно, эти виды необходимы и оценить всю их важность, необходимо рассмотреть каждый вид отдельно.

Итак, главной целью понижающих подстанций является преобразование первичного напряжения данной электросети во вторичное, которое является значительно меньше, нежели первое.

Второй тип имеет название – повышающие трансформаторы. Их цель полностью противоположна понижающим. Главная их задача заключается в том, чтобы выработанное напряжение генераторами преобразовать в значительно высшее.

Виды трансформаторных подстанций также условно можно разделить на местные и районные. Главной их задачей является распределение электроэнергии по объектам – потребителям. Чтобы достигнуть конечной цели сначала подстанции принимают электроэнергию, затем осуществляется передача.

Для технически верного решения по распределению электроэнергии существует схема трансформаторной подстанции.

Виды трансформаторных подстанций по значению напряжения

Всего существует четыре основных вида подстанций от значения напряжения, такие как:

  • Узловая распределительная подстанция – это подстанция, которая рассчитана на напряжение 110. 220 кВ. Она получает электроэнергию от энергосистемы и распределяет ее по подстанциям глубокого ввода, не осуществляя трансформаций.
  • Подстанция глубокого ввода – подстанция для напряжения 35. 220 кВ, которая получает питание от энергосистемы или центрального распределительного пункта. Используется для того, чтобы обеспечить группу подстанций либо крупные предприятия.
  • Главные понижательные. Данный вид подстанций осуществляет распределение энергии по всему предприятию и, в свою очередь, подпитывается благодаря энергии всего района, трансформаторные подстанции питают непосредственно приемники полученного напряжения.
  • Отдельным видом подстанций можно считать тяговые подстанции. Они используются для того, чтобы обеспечить такие объекты-потребители, как трамваи, троллейбусы и другой транспорт электрической энергией.

Трансформаторные подстанции по типам получения энергии

Если углубляться дальше, то следует уяснить и разобрать, какие же еще существуют подвиды трансформаторных подстанций.

Если говорить о типах получения энергии самой подстанции, то таких имеются два:

  • тип понижающего принципа работы. Для последующего распределения по объектам он преобразовывает напряжение в более низкое;
  • тип повышающего принципа работы. В свою очередь, данный тип наоборот намного повышает напряжение, чтобы достигнуть необходимого результата.

Трансформаторные подстанции по охвату территории

Охватываемая территория также является влияющим фактором, по которому можно классифицировать тип трансформаторной подстанции.

В таком разрезе можно выделить основные группы трансформаторных подстанций:

  1. Локальные. Получают напряжение от одного до нескольких крупных объектов, которые находятся на небольшом расстоянии друг от друга либо непосредственно рядом. Примером может быть развлекательный комплекс и парк.
  2. Местные, которые осуществляют преобразование напряжения для набора объектов, находящихся в границах микрорайона.
  3. Районные трансформаторные подстанции несут ответственность за обработку (т.е. они могут преобразовывать, распределять) напряжение по всему населенному пункту.

Также абсолютно все подстанции оборудованы средствами защиты от перепадов и скачков при осуществлении подачи электроэнергии. На тот случай, когда подача напряжения прекратится, во множестве локальных систем электроснабжения предусмотрены средства, которые осуществляют автоматический ввод резерва, сокращенно – АВР.

Когда происходит спад либо сбой при подаче напряжения, это устройство подключает резервный источник электропитания. Данная система может визуально выглядеть шкафом, стойкой, панелью и монтирована разными способами. Эти способы можно также выделить в подвиды трансформаторных подстанций.

Например, столь популярная комплектная трансформаторная подстанция бывает различных типов:

  1. Столбового типа. Имеют большую популярность ввиду того, что такие подстанции дешевы и монтируются на опору ЛЭП, хотя подвержены внешним факторам из-за слабой защищенности.
  2. Мачтовая трансформаторная подстанция – это самая компактная из группы подстанций, в отличие от столбового типа. Мачтовая трансформаторная подстанция монтируется не на опору линии электропередач.
  3. Подстанции киоскового типа, которые являются подстанциями наружной установки. Главной их задачей является прием электрической энергии, а именно переменного тока трех фаз. Киосковые подстанции являются сборносварочной конструкцией.
  4. Наружной установки. Такой тип служит для приема энергии, ее преобразования и распределения. В основном применяются в газовой промышленности.
  5. Внутренней установки. Зачастую широко применяются в народном хозяйстве в районах, которые обладают умеренным климатом. Необходимо обратить внимание на то, что данный тип подстанций является довольно важным и с ним нужно разобраться более детально.

Закрытый тип подстанций делится на такие виды, как:

  1. Пристроенные – это такие подстанции, которые являются примыкающими к основному зданию и никак иначе.
  2. Встроенные, еще их называют закрытыми подстанциями. Они являются вписанными в контур самого основного здания.
  3. Внутрицеховые. Они соответственно располагаются внутри самого здания.

Корпус подстанции играет значительную роль, ведь производя обслуживание трансформаторных подстанций, важно иметь в виду безопасность и нужно быть уверенным в том, что подстанция не будет повреждена внешними факторами, какого бы типа она ни была. Например, мачтовые трансформаторные подстанциине должны подвергаться вибрациям и ударам.

Особенности установки трансформаторных подстанций в зависимости от их типов

Необходимо знать, как и где правильно располагать подстанции, в том числе и мачтовые трансформаторные подстанции.

От места и способа разделяют несколько категорий присоединения подстанций к электрической цепи, а именно:

  • тупиковые подстанции получают энергию от определенной электроустановки по одной или же двум линиям, которые, в свою очередь, параллельны между собой. Тупиковые – это такие подстанции, которые получают питание по радиальным схемам и это является самым главным их отличием;
  • ответвительные – это такой тип подстанции, которые присоединяются к проходящим линиям (одной или двум) глухой отпайкой;
  • проходные. Главная их цель – это присоединение к сети при помощи захода одной или же двух линий, которые обладают только двусторонним питанием;
  • узловые. К данной подстанции подсоединено несколько линий питающей сети, которые проходят от двух или более питающих электрических установок.

Схема трансформаторной подстанции необходима и важна, так как благодаря ей можно избежать множества нелепых ошибок и не допустить серьезных проблем. Следует только правильно ею пользоваться и уметь ее читать, и тогда работа пройдет точно и легко.

При разработке схем профессионалы пытаются максимально ее упростить и сделать более понятной для большой аудитории людей, однако, не смотря на все усилия, иногда допускаются неприятные ошибки, которые могут вести к серьезным сбоям и требуют исправления сразу на месте.

Таким образом, трансформаторные подстанции имеют широкие возможности применения и гибкие характеристики, которые позволяют использовать каждый тип подстанции для определенных объектов, в зависимости от поставленной проектировщиком задачи.

Ведущие заводы трансформаторных подстанций

По своей сути подстанция представляет собой специальную установку, используемую для формирования (повышения или понижения) необходимого напряжения и передачи электроэнергии. Такая установка включает силовые трансформаторы, устройства для передачи электроэнергии, а также автоматического управления и защиты и различные необходимые сооружения.

Практически каждый отечественный завод трансформаторных подстанций располагает технически современной производственной базой.

Наиболее известные производители трансформаторных подстанций, а также комплектующих к ним, которые ежегодно принимают участие в выставке «Электро» – это:

  • ЗАО «Электронмаш»;
  • ХК «Уралэлектротехника»;
  • ЗАО «ЭлтКом»;
  • ООО «ТМК–ЭНЕРГО»;
  • ООО «Вертекс» и многие другие.

Производимые этими и многими другими предприятиями подстанции делятся на два типа. Повышающий тип подстанций монтируется, как показывает практика, по большей части именно на электростанциях. Такие установки изменяют напряжение, которое обеспечивают генераторы, в более высокое напряжение, подходящее для подачи электроэнергии по линиям электропередачи (ЛЭП).

Понижающие трансформаторные установки моделируют первичное напряжение электрической сети в более низкое, вторичное. Все отечественное оборудование отличается высоким качеством, долгим сроком эксплуатации, высокой надежностью и наличием гарантийного обслуживания.

Российские заводы имеют огромный опыт работы с самыми разными клиентами, их работу отличает применение передовых технологий и различных материалов, что гарантирует удовлетворение всех запросов даже самых требовательных клиентов.

За время работы каждый российский завод трансформаторных подстанций, который принимает участие в выставке «Электро», осваивает постоянно развивающиеся технологии, наладил производство передового оборудования, разработал собственные наработки, которые благодаря таким выставкам перенимают другие предприятия страны.

Стоит отметить, что любой участник выставки — это одновременно мощная производственная площадка, высококлассный конструкторский центр, современная лаборатория и сеть региональных представителей.

Больше о типах трансформаторных подстанций и заводов их производящих можно узнать на выставке «Электро»

Преобразование и распределение электроэнергии.

Трансформаторные подстанции

Электроустановки, которые предназначены для распределения электроэнергии и преобразования напряжения в сети называются трансформаторные подстанции. В их состав входят распределительные устройства, силовые трансформаторы, устройства защиты и автоматического управления, а также прочие вспомогательные агрегаты.

Трансформаторные электроустановки применяются в различных сферах деятельности. Их используют на промышленных предприятиях, в сельском хозяйстве и в населенных пунктах с развитой инфраструктурой, работоспособность которой поддерживать нужно постоянно и качественно.

Трансформаторные подстанции и их типы

Существует классификация, которая подразделяет такие установки на понижающие и повышающие. При этом повышающие трансформаторные подстанции преобразуют поступающее от генераторов напряжение, придавая ему столь высокое значение, насколько это необходимо для передачи электроэнергии, понижающие же превращают первичное напряжение сети в более низкое – вторичное.

Трансформаторные установки изготавливают на заводах и на место доставляют полностью собранными или же отдельными, соединяемыми между собой блоками.

Классификация трансформаторных подстанций

Понижающие подстанции подразделяются на:

  • районные, которые принимают электрическую энергию непосредственно от высоковольтных линий электропередач и после преобразования передают ее далее на главные;
  • главные еще больше снижают напряжение и со значениями от 6 до 35 кВ отправляют ее на местные подстанции;
  • на местных трансформаторных подстанциях осуществляется конечное понижение напряжения до нужных значений и распределение электроэнергии непосредственно между потребителями.

Повышающие трансформаторные установки работают в обратном режиме.

Устройство трансформаторных подстанций

Внешне трансформаторная подстанция представляет собой объемное помещение, изготовленное из цельного металла, толщина которого должна быть меньше 2-3 мм. Обязательно наличие двери и нескольких окон, чтобы было удобнее наблюдать за работой установки.

Пространство разделено на два помещения. В первом из них расположены коммутационные аппараты и панели управления, в другом – силовые трансформаторы, попасть сюда может только обслуживающий персонал.

Силовые трансформаторы, Их виды и применение

«Сердце» подстанции – трансформатор. Именно он преобразует переменный ток и от него зависит направление работы всей установки, то есть понижение или повышение напряжения электроэнергии.

В зависимости от охлаждающей и изолирующей среды эти устройства делятся на масляные и сухие трансформаторы.

Оба вида установок широко распространены, однако чаще применяются масляные силовые трансформаторы. Они стабильно работают в диапазоне температур от -60 0 до +40 0 . Такие устройства могут использоваться как внутри помещения, так и снаружи. Однако их применение предъявляет повышенные требования к окружающей среде: она не должна быть химически активной и взрывоопасной. Потому, в тех условиях, когда масляные применять нельзя, используют сухие трансформаторы.

Они более экологичны, экономически выгодны, обладают свойствами самоугасания при пожаре и не выделяют ядовитых газов. Применение сухих трансформаторов наиболее обосновано в тех местах, где к безопасности предъявляются жесткие требования: в метро, в аэропортах, на атомных электростанциях, нефтеперерабатывающих платформах и тому подобных.

Энергопринимающие устройства потребителя

Запись дневника создана пользователем Alex Sirotkin, 31.01.16
Просмотров: 65.381, Комментариев: 22

Итак, попробуем ответить на вопрос – что же такое «энергопринимающие устройства потребителя».
Расскажем, что можно рекомендовать указывать в качестве наименования энергопринимающих устройств в заявке на присоединение к электросетям.
Заинтриговало?
Тогда наберемся терпения и читаем приведенную ниже “официальную часть”.
В соответствии с подпунктом «б» пункта 9 Правил технологического присоединения энергопринимающих устройств потребителей электрической энергии, объектов по производству электрической энергии, а также объектов электросетевого хозяйства, принадлежащих сетевым организациям и иным лицам, к электрическим сетям, утвержденных Постановлением Правительства РФ от 27.12.2004 N 861 (далее Правила ТП) в заявке, направляемой заявителем, должно быть указано наименование энергопринимающих устройств, которые необходимо присоединить к электрическим сетям сетевой организации.
Согласно пункту 2 Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг, утвержденных Постановлением Правительства РФ от 27.12.2004 N 861 (Далее Правила НД) «энергопринимающие устройства потребителя» — находящиеся у потребителя аппараты, агрегаты, механизмы, устройства и иное оборудование (или их комплекс), предназначенные для преобразования электрической энергии в другой вид энергии в целях использования (потребления) и имеющие между собой электрические связи.
Из пункта 2 Правил НД, следует, что законодатель приравнивает понятия «энергопринимающее устройство» и «энергетическая установка». В соответствии с ГОСТ 19431-84 «Государственный стандарт Союза ССР. Энергетика и электрификация. Термины и определения» (утв. Постановлением Госстандарта СССР от 27.03.1984 N 1029), под энергоустановкой понимается комплекс, предназначенных для производства или преобразования, передачи, накопления, распределения или потребления энергии.
По смыслу ГОСТ 19431-84 одной из разновидностью энергетических установок является электроустановка — энергоустановка, предназначенная для производства или преобразования, передачи, распределения или потребления электрической энергии.
Согласно пункту 1.1.3 Правил устройства электроустановок электроустановка — совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другие виды энергии.
В соответствии с ГОСТ 19431-84 «приемник электрической энергии» — устройство, в котором происходит преобразование электрической энергии в другой вид энергии для ее использования.
Несмотря на то, что определение «энергопринимающие устройства потребителя» схоже с определением «приемник электрической энергии» суды приходят к выводу, что отдельный приемник электрической энергии не является энергопринимающим устройством, поскольку оно не соответствует приведенному понятию энергетической установки.
В Постановлении Пятого арбитражного апелляционного суда от 18.03.2013 N 05АП-2054/2013 по делу N А51-12946/2012 суд отклонил довод организации о том, что холодильное оборудование, установленное в помещении, является энергопринимающим устройством, поскольку определение приемника электрической энергии не соответствует приведенному понятию энергетической установки.
Кроме, того исходя из абзаца 12 пункта 2 Правил НД, точка присоединения к электрической сети — место физического соединения энергопринимающего устройства (энергетической установки) потребителя услуг по передаче электрической энергии (потребителя электрической энергии, в интересах которого заключается договор об оказании услуг по передаче электрической энергии) с электрической сетью сетевой организации. В качестве модели можно принять, что система распределения электроэнергии наименьшего размера включает в себя источник питания и один электроприемник, однако необходимо отметить, что на практике такая система встречается редко.
Вместе с тем, с одной стороны в Правилах ТП говорится о наименовании энергопринимающих устройств во множественном числе, с другой стороны согласно абзацу 6 пункта 28 Основных положений функционирования розничных рынков электрической энергии, утвержденных Постановлением Правительства Российской Федерации от 04.05.2012 N 442 в отношении одного энергопринимающего устройства может быть заключен только один договор энергоснабжения (можно предположить что здесь законодатель допустил неточность и имел в виду не одно энергопринимающее устройство как отдельный электропиемник, а подключаемый объект — электроустановку.)
В качестве дополнительного подтверждения того, что заявитель подключает именно электроустановку служит подпункт б) пункта 82 Правил ТП: ”б) осмотр сетевой организацией присоединяемых электроустановок заявителя, построенных (реконструированных) в рамках выполнения технических условий, на соответствие фактически выполненных заявителем мероприятий по технологическому присоединению техническим условиям и представленной заявителем проектной документации, а в случаях, если в соответствии с законодательством Российской Федерации о градостроительной деятельности разработка проектной документации не является обязательной, — на соответствие требованиям, определенным в технических условиях”.
Основополагающим документом на низковольтные электрические установки является ГОСТ 30331.1-2013 (IEC 60364-1:2005). Межгосударственный стандарт. Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения.
О наименованиях электроустановок, присоединяемых к электросетям, можно судить по наименованию электрических установок объектов на которые распространяется требования ГОСТ 30331.1-2013. Приведем здесь их неполный перечень:
a) жилые здания;
b) торговые предприятия;
c) общественные здания;
d) производственные здания;
e) сельскохозяйственные и садоводческие строения;
f) сборные здания;
h) строительные площадки и другие временные сооружения;
j) наружное освещение и электроустановки аналогичного назначения.
По-другому можно сказать, что здесь перечислены объекты, которые включают в себя электроустановки.
Отсюда можно сделать вывод, что в большинстве случаев объектом присоединения к электрическим сетям является электроустановка здания или сооружения.
Для исключения противоречий в понимании термина «энергопринимающие устройства потребителя», можно рекомендовать поступать следующим образом:
В заявке в качестве наименования энергопринимающих устройств можно указать (перечислить) приемники электрической энергии с указанием объекта присоединения, то есть электроустановки (наименование электроустановки здания или сооружения).
В наиболее предпочтительном варианте рекомендую указать в качестве наименования энергопринимающих устройств наименование электроустановки здания или сооружения (отдельные приемники не перечислять). Исходя из назначения здания или сооружения будет понятно какие приемники электрической энергии (аппараты, агрегаты, механизмы, устройства и иное оборудование) вы намерены подключать, то есть фактически вы именуйте их комплекс — определяете общее наименование энергопринимающих устройств потребителя в котором содержится наименование присоединяемого объекта (указывайте наименование электроустановки присоединяемого объекта), а наименование отдельных энергопринимающих устройств как приемников электрической энергии будет иметь определяемый характер.
В заключении приведем примеры указания наименования энергопринимающих устройств в заявке.
Для подключения жилого дома:
Вариант 1 (можно указать): Освещение, холодильник, стиральная машина, телевизор в жилом доме.
Вариант 2 (лучше указать): Электроустановка жилого дома.
Вариант 3 (рекомендую указать): Жилой дом.
Предпочтительным является Вариант 3 — сетевой организации и так понятно, что вы желайте подключить электроустановку жилого дома.
Далее приведем рекомендуемые наименования энергопринимающих устройств для бытовых потребителей:
• гараж;
• баня;
• хозяйственная постройка;
• дачный дом;
• садовый домик;
• бытовка.
В случае если желайте подключить несколько объектов сразу, то можно перечислить их в заявке через запятую или написать – комплекс объектов индивидуального жилищного строительства.

Надеюсь, что статья будет полезной.
До новых встреч.

Читать еще:  Как сделать газобетон своими руками в домашних условиях

Виды распределительных устройств(РУ)

Доставка электрической энергии к потребителям требует организации и устройства соответствующей материально-технической базы, важнейшими элементами которой выступают распределительные устройства. Рассмотрим основные разновидности распределительных устройств, их назначение и характеристики, порядок подключения и требования.

  1. Назначение распределительных устройств
  2. Классификация
  3. РУ до 1 кВ
  4. Высоковольтное оборудование

Назначение распределительных устройств

Распределительными устройствами называют электроустановки, принимающие и распределяющие электроэнергию в ходе доставки её к потребителям. Кроме доставки энергии по назначению, РУ служат для подачи напряжения соответствующих характеристик на оборудование электроустановок и коммутационных систем.

Классификация

Различают несколько классификаций РУ по различным особенностям. Распределительные устройства, в зависимости от условий эксплуатации бывают(чтобы увеличить схему кликните по ней):

    открытого типа (ОРУ) – оборудование, расположенное вне зданий или других укрытий. Такие устройства отличаются удобством проверки исправности, простотой расположения и внесения изменений, но занимают большое пространство и требуют повышенной защиты от неблагоприятного воздействия атмосферных и климатических факторов;

ОРУ
закрытого типа (ЗРУ) – размещаются в защищённых объектах и занимают намного меньше места. Недостаток – сложность в обслуживании в связи с большей компактностью размещения. Характерны для условий промышленного предприятия или города.

Указанные РУ могут различаться по следующим критериям:

  • способу разделения – в виде отдельных секций или с шинными системами. Шинные системы могут переключать потребителей от одной секции к другой. Если выполняются отдельные секции, потребитель подключается персонально;
  • схеме подключения устройств – кольцевым и радиальным способом. При кольцевой схеме один объект подключается к нескольким выключателям. Если устраивается радиальная схема – потребители питаются посредством разъединителей сборных шин с помощью одного выключателя. Радиальный способ более простой, а кольцевой – надёжнее и практичнее для обеспечения работы электрооборудования;
  • присутствия обходных элементов – данная система позволяет производить ремонт оборудования без отключения абонентов.

В дополнение к перечисленным разновидностям используется элегазовое оборудование, предусматривающее помещение установок внутрь пространства, заполненного специальным составом с высокими свойствами безопасности.

Конструкция – КРУ

Также применяются комплектные распределительные устройства (КРУ), состоящие из типовых модулей, помещённых в шкафы. Такие элементы содержат необходимые предохранительные блоки, выключатели и другие составляющие и поставляются в готовом виде, не требующем комплектации. Если устройство предполагает наружную установку, его называют КРУН. Такой модуль предусматривает наличие соответствующей защиты.

В зависимости от класса напряжения, параметров сети, численного состава абонентов, предусмотрено наличие следующих распределительных устройств:

  • сборных камер;
  • комплектных распределительных устройств;
  • пунктов по ведению коммерческого учёта;
  • комплектных трансформаторных подстанций;
  • пунктов по автоматическому регулированию напряжения;
  • панелей щитов распределения;
  • распределительных низковольтных щитков;
  • шкафов по учёту электрической энергии наружного размещения для частных домов;
  • устройств по контролю параметров.

Детальнее об особенностях РУ по характеристикам напряжения.

Подробнее про РУ можете найти в этой книге(про РУ со страницы 392): Открыть книгу

РУ до 1 кВ

Указанные элементы комплектуют и размещают в специальных шкафах или щитках. Их назначение может предусматривать передачу энергии потребителям или запитку собственного оборудования.

Кроме основных систем, такие модули могут снабжаться дополнительными устройствами:

  • токовыми трансформаторами и приборами учёта электрической энергии;
  • индикационными цепями и сигнализаторами положения коммутационных переключателей;
  • измерительными блоками для определения технических характеристик цепей;
  • сигнализационными и защитными устройствами от замыканий на землю;
  • аппаратами автоматического включения резервных цепей;
  • дистанционными системами управления.

Низковольтные распределительные устройства могут включать модули с постоянным током, распределяющие напряжение от источников питания к оборудованию и потребителям.

Высоковольтное оборудование

Данные системы рассчитаны на работу элементов в условиях напряжения выше 1 кВ.

РУ могут комплектоваться в шкафах, разделённых на отдельные отсеки с токовыми трансформаторами, отходящими кабелями, сборными шинами, выкатной частью и отсеками вторичных цепей.

Отдельные отсеки надёжно изолируются, для обеспечения безопасности эксплуатации. В выкатных модулях, учитывая назначение, размещаются выключатели, трансформаторы напряжения, разрядники, трансформаторы собственных потребностей.

Расположение выдвижного элемента может предусматривать нахождение в рабочем, контрольном (разобщённом) или ремонтном положении. Если аппарат в работе, замыкаются главные и вспомогательные схемы. Для контрольного положения характерно разомкнутое состояние главных и замкнутое – вспомогательных цепей. При ремонтном положении обе цепи размыкаются, а выдвижной элемент располагается за пределами шкафа.

Шины токоведущих элементов выполняются из алюминия или сплавов на его основе. При применении токов большой величины используются медные элементы, а если значение номинального электротока в пределах 200 А – из стали.

Безопасность работы оборудования обеспечивается за счёт соответствующих блокирующих систем. Применяются шторки и ограждения, закрывающие выкаченный выдвижной элемент и не допускающий возможность включения оборудования в таком состоянии.

Грамотное использование и комплектация распределительных устройств обеспечивает надёжную подачу энергии потребителям в заданных параметрах и безопасность эксплуатации энергетического оборудования.

Методы передачи электроэнергии на расстояние

Электроэнергией является свойство магнитного поля преобразоваться в иные виды энергии. Такими видами энергии могут быть: механическая, химическая, паровая, лазерная. Число потребителей и источников потребления постоянно растет. Поэтому вопрос о способах передачи электроэнергии на большие расстояния, с сохранением мощности и ее распределением, остается открытым. Статья опишет основные и актуальные способы передачи, а также современные разработки в области беспроводных технологий.

Способы передачи электроэнергии

Электроэнергия или переменный ток, передается от источника к потребителю, через провода или подземные кабельные линии. Эти способы актуальны на протяжении многих лет. Связано это с тем, что нет технологии, способной передать электричество на большое расстояние при минимальных потерях с сохранением полной мощности. Да и способ еще должен быть максимально надежным и дешевым.

Схема передачи переменного электрического напряжения или постоянного электрического напряжения выглядит следующим образом:

Принцип работы и объяснение схемы:

  1. В начале схемы находится генератор, вырабатывающий электричество.
  2. От генератора напряжение подается на трехфазный трансформатор, для повышения мощности. От него электричество течет по ЛЭП (линия электропередачи).
  3. После ЛЭП напряжение попадает на трехфазный понижающий трансформатор.
  4. От трансформатора напряжение подается потребителю, с существенным занижением.

Для постоянного тока существует выпрямительное устройство, которое находится после повышающего трансформатора. Пройдя по ЛЭП, постоянный ток сначала должен попасть на устройство преобразования постоянного тока в переменный, а только потом на понижающий трансформатор.

Воздушные и кабельные линии

Потребление электроэнергии по воздушным ЛЭП и кабельным линиям, представляет собой определенную схему. В начале схемы находится источник энергии, а именно электростанция. Электростанция подает завышенное напряжение на распределительную линию, в конце которой находится занижающий трансформатор. Основным минусом подобной схемы является именно потребность в подаче слишком высокой мощности. Связано это с потерей доли напряжения на расстоянии. Способов подобной передачи 2.

Воздушные линии представляют собой сеть высоковольтных проводов, подвешенных на столбы или опоры. Этот метод очень распространен и является эффективным. Но и у него есть ряд минусов:

  • большие затраты в рабочей силе и материале на стадии поставки новым потребителям на большое расстояние;
  • потеря значительной доли мощности с каждым километром;
  • требование подачи большой мощности в начале (от электростанции);
  • вред магнитного поля для человека;
  • большая вероятность повреждения и разрушения от природных катаклизмов;
  • большие трудности для монтажа ЛЭП в трудных, непроходимых регионах.

Воздушные линии подают потребителю переменный ток. По дальности и мощности они делятся на следующие категории:

  1. Воздушные линии напряжением до 1 кВ считаются низковольтными. Они являются окончанием схемы передачи к потребителю.
  2. Линии с напряжением от 1 до 35 кВ считаются средними.
  3. Высоковольтными линиями считаются ВЭЛ с напряжением 110-220 кВ. Эти линии являются началом схемы передачи напряжения.
  4. К сверхвысоковольтным относятся ВЭЛ напряжением 330–750 кВ.
  5. К ультра высоковольтным относятся ВЭЛ напряжением, превышающим 750 кВ.

Чем выше подаваемое напряжение, тем большие расстояния оно должно покрыть от источника к потребителю.

Кабельные линии работают по схожему принципу. По ним также поступает переменный электрический ток. Но проводят такие линии под землей или под водой. Основными недостатками подобной передачи являются:

  1. Большие трудности и затраты при прокладке. Кабельные линии прокладываются в местах, где невозможно или опасно проводить воздушные линии.
  2. Также идет потеря доли напряжения с расстоянием.
  3. Существует опасность механического повреждения или растяжения кабеля.
  4. Есть опасность шагового напряжения при повреждении, особенно в воде.
  5. Очень тяжело найти и устранить повреждение.
Читать еще:  Как сделать изоляцию трубы дымохода – проверенные и надёжные варианты

На данный момент существует 2 схемы передачи электроэнергии от источника к потребителю по воздушным или кабельным линиям:

  1. Разомкнутая схема. Эта схема передачи представляет собой источник напряжения и потребителя как прямую линию. Минусом такой схемы является отсутствие резервной линии при повреждении какого-либо участка.
  2. Замкнутая схема (более надежна). В ней источник и все потребители заключены в кольцо или сложную схему. При повреждении участка линии, подача электричества не прекращается.

Подобные схемы также делятся на категории.

Схемы в визуальном отображении:

Разомкнутая схема бывает 3 видов:

  1. Схема радиального подключения, в которой на одном конце находится подающее устройство, а на втором конце потребитель энергии.
  2. Магистральная схема похожа на радиальную, но в ней присутствуют дополнительные отводы для потребления.
  3. Схема магистральной подачи, при которой между двумя источниками находится один потребитель.

Замкнутая схема также бывает 3 видов:

  1. Кольцевая схема с одним источником и потребителем.
  2. Магистральная схема с наличием резервного источника.
  3. Сложная замкнутая схема, для подключения потребителей особого назначения.

Все эти схемы относятся к передаче постоянного тока потребителю. Передача и распределение электроэнергии подобным способом является одинаковым для российских и зарубежных сетей.

Постоянный ток

Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:

  1. С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
  2. Статическая устойчивость не оказывает влияния на передачу и распределение.
  3. Не требуется настраивать частотную синхронизацию.
  4. Напряжение можно передать всего по одной линии с одним контактным проводом.
  5. Нет влияния электромагнитного излучения.
  6. Минимальная реактивная мощность.

Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.

Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.

Беспроводная передача

Передать и распределить ток по потребителям без использования проводов, это реалии наших дней. Об этом способе впервые задумался и воплотил его в жизнь Никола Тесла. На сегодняшний день ведутся разработки в этом направлении. Основных способов всего 3.

Катушки

Катушками индуктивности является свернутый в спираль изолированный провод. Метод передачи тока состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение такого же напряжения. Любые изменения напряжения на катушке передатчике, изменятся на катушке приемнике. Подобный способ очень прост и имеет шансы на существование. Но есть и свои недостатки:

  • нет возможности подать высокое напряжение и принять его, тем самым невозможно обеспечить напряжением несколько потребителей одновременно;
  • невозможно передать электричество на большое расстояние;
  • коэффициент полезного действия (КПД) подобного способа — всего 40 %.

На данный момент актуальны способы простого использования катушек, как источника и получателя энергии. Этим способом заряжают электрические самокаты и велосипеды. Есть проекты электромобилей без аккумулятора, но на встроенной катушке. Предлагается использовать дорожное покрытие в качестве источника, а машину в качестве приемника. Но себестоимость прокладки подобных дорог очень высокая.

Лазер

Передача электричества посредством лазера, представляет собой источник, преобразующий энергию электричества в лазерный луч. Луч фокусируется на приемник, который его преобразует обратно в электричество. Компания Laser Motive смогла передать при помощи лазера 0.5 Кв электрического тока, на расстояние в 1 км. При этом потеря напряжения и мощности составила 95 %. Причиной потери стала атмосфера Земли. Луч многократно сужается при взаимодействии с воздухом. Также проблемой может стать обычное преломление луча случайными предметами. Подобный способ, без потери мощности, может быть актуальным только в космическом пространстве.

Микроволновая передача

Основой для передачи электроэнергии путем микроволн, стала способность 12 см волн, частотой в 2.45 ГГц, быть незаметными для атмосферы Земли. Подобная особенность могла бы сократить до минимума потерю при передаче. Для подобного способа нужны передатчик и приемник. Люди давно создали передатчик и преобразователь электрической энергии в микроволновую. Это изобретение называется магнетрон. Он стоит в каждой микроволновой печи и является очень безопасным. Вот с изобретением приемника и преобразователя микроволн обратно в электричество возникли проблемы.

В 60-х годах прошлого века, американцы изобрели ректенну. Иными словами, приемник микроволн. С помощью изобретения удалось передать 30 кВт электрического тока на расстояние в 1.5 км. При этом коэффициент потерь составил всего 18 %. На большее установка была не способна по причине использования полупроводниковых деталей в устройстве приемника. Для приема и передачи большей мощности энергии, при использовании ректенны, пришлось бы создать огромную принимающую панель. Это бы увеличило затрачиваемую энергию, частоту и длину волн, а значит и процент сопутствующей потери. Высокое излучение могло бы убить все живое в радиусе нескольких десятков метров.

В СССР был изобретен циклотронный преобразователь микроволн в электричество. Он представлял собой 40 см трубку и был полностью собран на лампах. КПД устройства равнялось 85 %. Но для этого способа основным минусом является способ сборки на лампах. Устройства на подобных деталях могут вернуть человечество в мир огромных телефонов, компьютеров величиной с комнату. О миниатюрных электрических приборах можно забыть.

Передачу микроволн можно было организовать из космоса. Подобный проект предполагал собирать энергию солнца при помощи спутника и перенаправлять на приемник, расположенный на поверхности Земли. Но для этого придется построить спутник диаметром в километр и приемник диаметром в 5 километров. О полетах в зоне действия системы можно полностью забыть.

Главной проблемой при передаче электричества беспроводным способом, является расстояние и атмосферные преломления. Стоит также учитывать мощности. Общая потребляемая мощность всех электрических приборов в квартире, равняется 30–40 кВт. Для обеспечения электричеством одной квартиры, пришлось бы строить гигантские сооружения.

На сегодняшний день единственным способом передачи энергии большой мощности, является проводной. Он не требует прямого и обратного преобразования электрической энергии. Достаточно только подать высокое напряжение в начале и существенно занизить его в конце. Этот способ имеет ряд недостатков, но остается актуальным долгие годы.

Видео по теме

Система распределения электроэнергии — это… (определение, состав, примеры)

Определение термина.

Система распределения электроэнергии, согласно ГОСТ 30331.1-2013 — это низковольтная электрическая система, состоящая из распределительной электрической сети и электроустановки (согласно ГОСТ 30331.1-2013 [1]).

Состав системы распределения электроэнергии и её примеры.

« Система распределения электроэнергии как правило включает в себя электроустановку здания, которая подключена к низковольтной распределительной электрической сети, состоящей из понижающей трансформаторной подстанции (источник питания) и воздушной или кабельной линии электропередачи. »

Источниками питания также могут быть: местная электростанция, отдельный электроге­нератор малой мощности, приводимый в действие двигателем внутреннего сгорания, и даже разделительный трансформатор, на основе которого в части электроустановки здания реализуется система IT. Однако перечисленные источники питания являются ис­ключением из общего правила. В подавляющем большинстве случаев в низковольтных распределительных электрических се­тях, к которым подключаются электроустановки зданий, источниками питания являются трансформаторы, установленные на понижающих трансформаторных подстанциях.

Рисунок 1 ниже наглядно демонстрирует подключение электроустановки здания к низковольтной распределительной электрической сети.

Рисунок 1: Пример общего вида системы распределения электроэнергии, имеющей тип заземления система TN-C-S (на основе рисунка 20.2 из [1])

На рисунке 1 следующие обозначения: 1 — заземляющее устройство источника питания; 2 — заземляющее устройство электроустановки здания; ПС — трансформаторная подстанция; ВЛ — воздушная линия электропередачи; КЛ — кабельная линия электропередачи; L1, L2, L3 — фазные проводники, N — нейтральный проводник, PE — защитный проводник, PEN — совмещенный защитный заземляющий и нейтральный проводник.

Электроустановку здания, в том числе, индивидуального жилого дома обычно подключают к низковольтной распределительной электрической сети, состоящей из трансформаторной подстанции (ПС) 10/0,4 кВ и воздушной линии электропередачи (ВЛ). Электроустановки многоквартирных жилых домов в городах обычно подключают к трансформаторным подстанциям кабельными линиями электропередачи (КЛ).

Харечко Ю.В. в своей статье [3] еще более детализирует:

« На трансформаторной подстанции проводники линии электропередачи (ВЛ) или (КЛ) подключены соответственно к трем фазным шинам (L1, L2, L3) и к PEN-шине ее распределительного устройства напряжением 0,4 кВ, а в электроустановке здания — к одноименным вводным зажимам вводно-распределительного или вводного устройства, установленного в здании. Проводники линии электропередачи могут также подключаться к зажимам, соединяющим провода ответвления от ВЛ к вводу с кабелем (проводами) ввода в электроустановку здания. Источником питания в рассматриваемой распределительной электрической сети является трансформатор, установленный на подстанции (ПС). »

Далее Харечко Ю.В. дает однозначное пояснение, где проходит граница, которая разделяет низковольтную распределитель­ную электрическую сеть и подключенную к ней электроустановку здания, обычно проходит [2]:

  • « По вводным зажимам ВРУ или ВУ, если электроустановку здания подключают к кабельной линии электропередачи распределительной электрической сети;
  • по вводным зажимам ВРУ или ВУ, если электроустановку здания подключают к воздушной линии электропередачи распределительной электрической сети, а ответвление от ВЛ к вводу и ввод в электроустановку здания выполняют кабелем, изолированными проводами или самонесущими изолированными проводами;
  • по зажимам, соединяющим провода ответвления от ВЛ к вводу с кабелем (проводами) ввода в электроустановку здания, если электроустановку здания подключают к ВЛ распределительной электрической сети, а ответвление от ВЛ к вводу выполняют неизолированными проводами. »

Электроустановка здания условно показана на рисунке 1 в виде трехфазного электроприемника класса I, открытые проводя­щие части которого подлежат защитному заземлению в соответ­ствии с особенностями рассматриваемого типа заземления сис­темы. Вводные зажимы ВРУ (ВУ), применяемого в электроуста­новке здания, подключены к соответствующим проводникам линии электропередачи. PEN-проводник разделяется на вводе в электроустановку здания. Поэтому во всей электроустановке здания применяются нейтральные и защитные проводники.

Харечко Ю.В. заостряет внимание [3] на том, что:

« Состав реальной системы распределения электроэнергии может быть иным. Если к распределительной электрической сети подключено несколько электроустановок зданий, то для каждой совокупности, включающей в себя общую распределительную электрическую сеть и конкретную электроустановку здания, может быть установлен свой тип заземления системы. В этом случае существует столько систем распределения электроэнергии, сколько электроустановок зданий подключено к общей распределительной электрической сети. »

« Если трансформаторную подстанцию размещают в большом здании, то обычно отсутствует один из элементов распределительной электрической сети — низковольтная линия электропередачи. Ее функции выполняют электропроводки распределительных электрических цепей, соединяющие низковольтное распределительное устройство ПС с низковольтными распределительными устройствами, входящими в состав электроустановки здания. Более того, система распределения электроэнергии может включать в себя только часть электроустановки здания, которую выполняют с иным типом заземления системы, чем остальные ее части. »

Далее я покажу, еще один пример — систему распределения электроэнергии, имеющую тип заземления системы TT:

Обозначения к рисунку 2, точно такие же как и для рисунка 1.

Рисунок 2. Пример системы распределения электроэнергии (тип заземления системы TT)

Система распределения электроэнергии наименьшего размера.

Система распределения электроэнергии наименьшего размера включает в себя источник питания, например электрогенератор, и один электроприёмник (см. рисунок 3 ниже). Ее можно выполнить с одним из пяти типов заземления системы (TN-C, TN-S, TN-C-S, TT, IT).

Рис. 3. Пример системы распределения электроэнергии наименьшего размера (на основе рисунка 20.3 из [1])

На рисунке 3 следующие обозначения: 1 — заземляющее устройство источника питания; LE — заземленный линейный проводник.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Устройства приема и распределения электроэнергии

Дизельная электро станция

Вырабатываемая станциями электронная энергия, поступает к месту употребления через систему взаимосвязанных передающих, распределяющих и модифицирующих электроустановок. Передача электроэнергии осуществляется по воздушным линиям электропередачи с напряжением от нескольких сот до сотен тыщ вольт. Электронная энергия по системным воздушным сетям передается с напряжением 35, 110, 150, 220 кВ и выше по шкале номинальных напряжений. Установки, служащие для приема и рассредотачивания электроэнергии, именуются распределительными устройствами (РУ). Они содержат коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и другие), также устройства защиты, автоматики и измерительные приборы. К РУ относятся центры питания (ЦП), распределительные пункты (РП), распределительные полосы (РЛ).

Центром питания именуются РУ генераторного напряжения электростанции либо РУ вторичного напряжения понижающей подстанции энергосистемы с системой регулирования, к которым присоединяются распределительные сети определенного района.

Распределительным пт именуется подстанция промышленного предприятия либо городской электронной сети, созданная для приема и рассредотачивания электроэнергии с одним напряжением без ее преобразования.

Распределительной именуется линия, питающая ряд трансформаторных подстанций от ЦП либо РП также большие электроустановки.

Распределительные устройства могут быть открытые (ОРУ — все либо основное оборудование размещено на открытом воздухе) и закрытые (ОРУ — оборудование размещено в здании). Особо нужно выделить более всераспространенные комплектные распределительные устройства (КРУ), состоящие из стопроцентно либо отчасти закрытых шифанеров или блоков со встроенными в их аппаратами, устройствами защиты и автоматики, поставляемые в собранном либо стопроцентно приготовленном для сборки виде и выпускаемые как для внутренней, так и для внешней установки.

Блочная комплектная трансформаторная подстанция

Подстанцией именуют электроустановку, служащую для преобразования и рассредотачивания электроэнергии и состоящую из трансформаторов либо других преобразователей энергии, распределительных устройств, устройств управления и вспомогательных сооружений.

Читать еще:  Методика пневмоударного бурения с обсадкой

Подстанция, на которой напряжение переменного тока преобразуется при помощи трансформатора, именуется трансформаторной (ТП). Если напряжение переменного тока на ТП преобразуется в более низкое, ее именуют понижающей, а если в более высочайшее — повышающей.

На трансформаторных подстанциях устанавливают трансформаторы, служащие для конфигурации напряжения. Сразу с трансформацией напряжения обычно меняется и число линий. К примеру, подходят к ТП одна либо две полосы высочайшего напряжения, а отходят от нее несколько линий низкого напряжения.

Различают два типа трансформаторных подстанций: открытые, в каких основное оборудование размещается на открытых площадках, и закрытые, оборудование которых располагается в помещениях.

Если на подстанции трансформация напряжения не делается, а меняется только число линий, то она именуется распределительной.

Преобразовательные подстанции служат для выпрямления переменного тока либо преобразования неизменного тока в переменный. На всех подстанциях устанавливают аппараты для переключения электронных сетей и разные контрольно-измерительные приборы.

Комплектная трансформаторная подстанция внешней установки

Электронные сети разделяются по напряжению на сети низкого — до 1 кВ и высочайшего — более 1кВ напряжения.

Большая часть промышленных компаний получают электроэнергию от подстанций. На подстанциях устанавливается два и поболее трансформаторов, через которые энергия от энергосистемы по линиям высочайшего напряжения (35, 110 либо 220 кВ) передается на секционированные рабочие (либо запасные) шины с напряжением 6…10кВ.

Подстанция, питающаяся конкретно от энергетической системы (или заводской электростанции), именуется главной понижающей подстанцией (ГПП) предприятия, а подстанция, на которой напряжение снижается конкретно для питания электроприемников 1-го либо нескольких цехов, — цеховой трансформаторной подстанцией (ТП).

Трансформаторные и преобразовательные подстанции, как и распределительные устройства, поставляются комплектными (КТП, КПП) в собранном либо стопроцентно приготовленном для сборки виде.

Измерение тока и напряжения на шинах распределительных устройств и в электронных цепях делается при помощи трансформаторов тока либо трансформаторов напряжения, служащих для снижения тока либо напряжения первичных цепей электроустановок переменного тока, также для питания катушек измерительных устройств, устройств релейной защиты и автоматики, присоединяемых к их вторичным обмоткам.

Применение измерительных трансформаторов позволяет:

определять любые напряжения и токи обыкновенными измерительными устройствами со стандартными обмотками, рассчитанными на напряжение 100 В и ток 5 А;

отделять измерительные приборы и реле от напряжений выше 380 В, обеспечивая безопасность их обслуживания.

Первичная обмотка измерительного трансформатора находится под воздействием измеряемой величины, а вторичная — замкнута на измерительные приборы и приборы защиты.

Открытое распределительное устройство

Прикосновение к измерительным устройствам, конкретно включенным в цепь высочайшего напряжения, небезопасно для человека, потому в данном случае измерительные приборы и аппаратура автоматической защиты (реле) врубаются во вторичную цепь измерительных трансформаторов, связанную с цепью высочайшего напряжения только через магнитный поток в сердечнике. Не считая того, измерительные трансформаторы служат для расширения пределов измерения устройств переменного тока, подобно дополнительным резисторам и шунтам. Применение измерительных трансформаторов с разными коэффициентами трансформации позволяет использовать приборы со стандартными пределами измерений (100 В и 5 А) при определении самых разных напряжений и токов.

Различают два вида измерительных трансформаторов: трансформаторы напряжения и трансформаторы тока.

Трансформаторы напряжения питают обмотки напряжения измерительных устройств и реле (вольтметров, частотомеров, счетчиков, ваттметров, реле напряжения, мощности и др.) в установках с напряжением 380 В и выше.

Трансформаторы тока питают токовые обмотки измерительных устройств и реле (амперметров, счетчиков, ваттметров, реле тока, мощности и др.).

Источниками электроснабжения большинства промышленных компаний являются энерго системы, но некие предприятия получают энергию от собственных промышленных электрических станций. Выработка и рассредотачивание энергии в границах предприятия от собственных электрических станций делается в главном в генераторном режиме с напряжением 6 и 10 кВ.

Распределительные устройства неизменного тока серии КВ на напряжение 3,3 кВ

Электронные цепи распределительных устройств и подстанций могут быть первичными и вторичными.

К первичным цепям относятся шиноустройства и токоведущие части аппаратов, соединяемые в определенной последовательности.

Ко вторичным относятся цепи, при помощи которых в первичных цепях РУ подстанций осуществляются электронные измерения, релейная защита, сигнализация, дистанционное управление и автоматизация, т.е. вторичные цепи обеспечивают контроль, защиту, комфортное и неопасное сервис первичных цепей.

На принципных схемах первичных цепей демонстрируют все главные элементы электроустановки: шиноустройства, разъединители, выключатели, предохранители, трансформаторы, реакторы и др., также соединения меж ними. Не считая того, чтоб лучше представить для себя работу установки и ее отдельных участков, в первичных схемах обычно демонстрируют без электронных соединений главные приборы и аппараты вторичных цепей, измерительные приборы, приборы релейной защиты и автоматики.

Современные РУ могут иметь разные схемы соединений.

Не считая того, нужно держать в голове, что отключение свободной от нагрузки полосы связано с разрывом ее зарядного тока, который тем больше, чем длиннее линия.

Установленный заместо разъединителя выключатель нагрузки позволяет отключать и включать линию при нагрузке в границах номинальной.

В данном случае на присоединении инсталлируются измерительные трансформаторы тока, а линейный и шинный разъединители служат для снятия напряжения с выключателя и трансформаторов тока при осмотре, ремонте, проверке и других работах. Потому что деяния с разъединителями вероятны только при отключенном выключателе, который разрывает цепь тока, порядок отключения полосы последующий: поначалу отключают выключатель, потом линейный разъединитель и в конце концов шинный разъединитель. Порядок включения полосы оборотный. Таковой вариант присоединения к РУ применяется для линий с большенными нагрузками и огромным током недлинного замыкания.

ФСК ЕЭС окончила установка оборудования ЗРУ 10 кВ на подстанции 110 кВ “Роза Хутор” в Сочинском регионе

Обычно такая схема применяется для присоединения воздушных линий. Заземляющие ножики в данном случае служат для заземления и закорачивания полосы после отключения, потому что в отключенной полосы может быть появление электронных зарядов, индуктируемых атмосферным электричеством либо рядом проложенными линиями. Разрядники созданы для отвода в землю электронных зарядов атмосферного электричества, создающих во включенной полосы значимые перенапряжения, небезопасные для всей установки. В открытых РУ разрядники присоединяются конкретно к основным шинам.

. Для отключения этого трансформатора от сети служит шинный разъединитель (отключение должно выполняться только при холостом ходе трансформатора); защита от высочайшего и низкого напряжений производится плавкими предохранителями.

В эту схему входят выключатель, созданный для оперативных переключений, и релейная защита (РЗ), приборы которой получают питание от измерительных трансформаторов тока.

Применение комплектных распределительных устройств и трансформаторных подстанций позволяет уменьшить сроки монтажных работ, понизить их цена и сделать лучше качество.

Виды устройств приема и распределения электроэнергии

Вырабатываемая станциями электрическая энергия поступает к месту потребления через систему взаимосвязанных передающих, распределяющих и преобразующих электроустановок. Передача электроэнергии осуществляется по воздушным линиям электропередачи с напряжением от нескольких сот до сотен тысяч вольт. Электрическая энергия по системным воздушным сетям передается с напряжением 35, 110, 150, 220 кВ и выше по шкале номинальных напряжений.

Схема дизельной электростанции.

Установки, служащие для приема и распределения электроэнергии, называются распределительными устройствами (РУ). Они содержат коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и другие), а также устройства защиты, автоматики и измерительные приборы. К РУ относятся центры питания (ЦП), распределительные пункты (РП), распределительные линии (РЛ).

Центром питания называются РУ генераторного напряжения электростанции или РУ вторичного напряжения понижающей подстанции энергосистемы с системой регулирования, к которым присоединяются распределительные сети конкретного района.

Схема распределительного устройства.

Распределительным пунктом называется подстанция промышленного предприятия или городской электрической сети, предназначенная для приема и распределения электроэнергии с одним напряжением без ее преобразования.

Распределительной называется линия, питающая ряд трансформаторных подстанций от ЦП или РП, а также крупные электроустановки.

Распределительные устройства могут быть открытые (ОРУ — все или основное оборудование расположено на открытом воздухе) и закрытые (ЗРУ — оборудование расположено в здании). Особо надо выделить наиболее распространенные комплектные распределительные устройства (КРУ), состоящие из полностью или частично закрытых шкафов либо блоков со встроенными в них аппаратами, устройствами защиты и автоматики, поставляемые в собранном или полностью подготовленном для сборки виде и выпускаемые как для внутренней, так и для наружной установки.

Подстанцией называют электроустановку, служащую для преобразования и распределения электроэнергии и состоящую из трансформаторов или других преобразователей энергии, распределительных устройств, устройств управления и вспомогательных сооружений.
Подстанция, на которой напряжение переменного тока преобразуется с помощью трансформатора, называется трансформаторной (ТП). Если напряжение переменного тока на ТП преобразуется в более низкое, ее называют понижающей, а если в более высокое — повышающей.

На трансформаторных подстанциях устанавливают трансформаторы, служащие для изменения напряжения. Одновременно с трансформацией напряжения обычно изменяется и число линий. Например, подходят к ТП одна или две линии высокого напряжения, а отходят от нее несколько линий низкого напряжения.

Различают два типа трансформаторных подстанций: открытые, в которых основное оборудование располагается на открытых площадках, и закрытые, оборудование которых размещается в помещениях.
Если на подстанции трансформация напряжения не производится, а изменяется только число линий, то она называется распределительной.

Преобразовательные подстанции служат для выпрямления переменного тока или преобразования постоянного тока в переменный. На всех подстанциях устанавливают аппараты для переключения электрических сетей и различные контрольно-измерительные приборы.

Электрические сети подразделяются по напряжению на сети низкого — до 1 кВ – и высокого — более 1 кВ напряжения.

Схема резервного электропитания.

Большинство промышленных предприятий получают электроэнергию от подстанций. На подстанциях устанавливается два и более трансформатора, через которые энергия от энергосистемы по линиям высокого напряжения (35, 110 или 220 кВ) передается на секционированные рабочие (или резервные) шины с напряжением 6-10 кВ.

Подстанция, питающаяся непосредственно от энергетической системы (либо заводской электростанции), называется главной понижающей подстанцией (ГПП) предприятия, а подстанция, на которой напряжение понижается непосредственно для питания электроприемников одного или нескольких цехов, — цеховой трансформаторной подстанцией (ТП).

Трансформаторные и преобразовательные подстанции, как и распределительные устройства, поставляются комплектными (КТП, КПП) в собранном или полностью подготовленном для сборки виде.
Измерение тока и напряжения на шинах распределительных устройств и в электрических цепях производится с помощью трансформаторов тока или трансформаторов напряжения, служащих для понижения тока или напряжения первичных цепей электроустановок переменного тока, а также для питания катушек измерительных приборов, устройств релейной защиты и автоматики, присоединяемых к их вторичным обмоткам.

Применение измерительных трансформаторов позволяет:

Схема включения измерительных трансформаторов.

  • измерять любые напряжения и токи обычными измерительными приборами со стандартными обмотками, рассчитанными на напряжение 100 В и ток 5 А;
  • отделять измерительные приборы и реле от напряжений свыше 380 В, обеспечивая безопасность их обслуживания.

Первичная обмотка измерительного трансформатора находится под воздействием измеряемой величины, а вторичная — замкнута на измерительные приборы и приборы защиты.

Прикосновение к измерительным приборам, непосредственно включенным в цепь высокого напряжения, опасно для человека, поэтому в этом случае измерительные приборы и аппаратура автоматической защиты (реле) включаются во вторичную цепь измерительных трансформаторов, связанную с цепью высокого напряжения только через магнитный поток в сердечнике. Кроме того, измерительные трансформаторы служат для расширения пределов измерения приборов переменного тока, подобно добавочным резисторам и шунтам. Применение измерительных трансформаторов с различными коэффициентами трансформации позволяет использовать приборы со стандартными пределами измерений (100 В и 5 А) при определении самых различных напряжений и токов.

Различают два вида измерительных трансформаторов: трансформаторы напряжения и трансформаторы тока.

Трансформаторы напряжения питают обмотки напряжения измерительных приборов и реле (вольтметров, частотомеров, счетчиков, ваттметров, реле напряжения, мощности и др.) в установках с напряжением 380 В и выше.

Трансформаторы тока питают токовые обмотки измерительных приборов и реле (амперметров, счетчиков, ваттметров, реле тока, мощности и др.).

Источниками электроснабжения большинства промышленных предприятий являются энергетические системы, но некоторые предприятия получают энергию от собственных заводских электростанций. Выработка и распределение энергии в пределах предприятия от собственных электростанций производится в основном в генераторном режиме с напряжением 6 и 10 кВ.

Электрические цепи распределительных устройств и подстанций могут быть первичными и вторичными.
К первичным цепям относятся шиноустройства и токоведущие части аппаратов, соединяемые в определенной последовательности.

Схема распределительных линий.

Ко вторичным относятся цепи, с помощью которых в первичных цепях РУ подстанций осуществляются электрические измерения, релейная защита, сигнализация, дистанционное управление и автоматизация, т.е. вторичные цепи обеспечивают контроль, защиту, удобное и безопасное обслуживание первичных цепей.
На принципиальных схемах первичных цепей показывают все основные элементы электроустановки: шиноустройства, разъединители, выключатели, предохранители, трансформаторы, реакторы и др., а также соединения между ними. Чтобы лучше представить себе работу установки и ее отдельных участков, в первичных схемах обычно показывают без электрических соединений основные приборы и аппараты вторичных цепей, измерительные приборы, приборы релейной защиты и автоматики. Современные РУ могут иметь различные схемы соединений.

Необходимо помнить, что отключение свободной от нагрузки линии связано с разрывом ее зарядного тока, который тем больше, чем длиннее линия.

Установленный вместо разъединителя выключатель нагрузки позволяет отключать и включать линию при нагрузке в пределах номинальной.

В этом случае на присоединении устанавливаются измерительные трансформаторы тока, а линейный и шинный разъединители служат для снятия напряжения с выключателя и трансформаторов тока при осмотре, ремонте, проверке и других работах. Так как действия с разъединителями возможны только при отключенном выключателе, который разрывает цепь тока, порядок отключения линии следующий: сначала отключают выключатель, затем линейный разъединитель и, наконец, шинный разъединитель. Порядок включения линии обратный. Такой вариант присоединения к РУ применяется для линий с большими нагрузками и большим током короткого замыкания.

Обычно такая схема применяется для присоединения воздушных линий. Заземляющие ножи в этом случае служат для заземления и закорачивания линии после отключения, так как в отключенной линии возможно возникновение электрических зарядов, индуктируемых атмосферным электричеством или рядом проложенными линиями. Разрядники предназначены для отвода в землю электрических зарядов атмосферного электричества, создающих во включенной линии значительные перенапряжения, опасные для всей установки.

В открытых РУ разрядники присоединяются непосредственно к главным шинам.
Для отключения этого трансформатора от сети служит шинный разъединитель (отключение должно производиться только при холостом ходе трансформатора); защита от высокого и низкого напряжений выполняется плавкими предохранителями.

В эту схему входят выключатель, предназначенный для оперативных переключений, и релейная защита (РЗ), приборы которой получают питание от измерительных трансформаторов тока.
Применение комплектных распределительных устройств и трансформаторных подстанций позволяет сократить сроки монтажных работ, снизить их стоимость и улучшить качество.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector