29 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики трехфазного тока

Трёхфазная система электроснабжения

Один из вариантов многофазной системы электроснабжения — трехфазная система переменного тока. В ней действуют три гармонические ЭДС одной частоты, создаваемые одним общим источником напряжения. Данные ЭДС сдвинуты по отношению друг к другу во времени (по фазе) на один и тот же фазовый угол, равный 120 градусов или 2*пи/3 радиан.

Первым изобретателем шестипроводной трехфазной системы был Никола Тесла, однако немалый вклад в ее развитие внес и российский физик-изобретатель Михаил Осипович Доливо-Добровольский, предложивший использовать всего три или четыре провода, что дало значительные преимущества, и было наглядно продемонстрировано в экспериментах с асинхронными электродвигателями.

В трехфазной системе переменного тока каждая синусоидальная ЭДС находится в собственной фазе, участвуя в непрерывном периодическом процессе электризации сети, поэтому данные ЭДС иногда именуют просто «фазами», как и передающие данные ЭДС проводники: первая фаза, вторая фаза, третья фаза. Фазы сдвинуты друг относительно друга на 120 градусов, а соответствующие проводники принято обозначать латинскими буквами L1, L2, L3 или A, B, C.

Такая система очень экономична, когда речь идет о передаче электрической энергии по проводам на большие расстояния. Трехфазные трансформаторы менее материалоемки.

Силовые кабели требуют меньше проводящего металла (как правило используется медь), поскольку токи в фазных проводниках, по сравнению с однофазными, имеют меньшие действующие величины, если сравнивать с однофазными цепями аналогичной передаваемой мощности.

Трехфазная система очень уравновешена, и оказывает равномерную механическую нагрузку на энергогенерирующую установку (генератор электростанции), чем продлевает срок ее службы.

При помощи трехфазных токов, пропускаемых через обмотки электрических потребителей — различных установок и двигателей, легко получить вращающееся вихревое магнитное поле, необходимое для работы двигателей и других электроприборов.

Синхронные и асинхронные трехфазные двигатели переменного тока имеют простое устройство, и гораздо экономичнее однофазных и двухфазных, а тем более — классических двигателей постоянного тока.

С трехфазной сетью в одной установке можно получить сразу два рабочих напряжения — линейное и фазное, что позволяет иметь два уровня мощности в зависимости от схемы соединения обмоток — «треугольник» (англоязычный вариант «дельта») или «звезда».

Что касается питания систем освещения, то присоединив три группы ламп — к различным фазам сети каждую, — можно значительно снизить мерцание и избавиться от вредного стробоскопического эффекта.

Перечисленные преимущества как раз и обуславливают широкое применение именно трехфазной системы электроснабжения в большой мировой электроэнергетике сегодняшнего дня.

Звезда

Соединение по схеме «звезда» предполагает соединение концов фазных обмоток генератора в одну общую «нейтральную» точку (нейтраль — N), как и концов фазных выводов потребителя.

Провода, соединяющие фазы потребителя с соответствующими фазами генератора называются в трехфазной сети линейными проводами. А провод, соединяющий между собой нейтрали генератора и потребителя — нейтральным проводом (обознаяается «N»).

При наличии нейтрали, трехфазная сеть получается четырехпроводной, а если нейтраль отсутствует — трехпроводной. В условиях, когда сопротивления в трех фазах потребителя равны друг другу, то есть при условии что Za = Zb = Zc, нагрузка будет симметричной. Это идеальный режим работы для трехфазной сети.

При наличии нейтрали, фазными называются напряжения между любым фазным проводом и нейтральным проводом. А напряжения между любыми двумя фазными проводами именуются линейными напряжениями.

Если сеть имеет схему соединения «звезда», то в условиях симметричной нагрузки соотношения между фазными и линейными токами и напряжениями могут быть описаны следующими соотношениями:

Видно, что линейные напряжения сдвинуты по отношению к соответствующим фазным на угол в 30 градусов (пи/6 радиан):

Мощность при соединении «звезда» в условиях симметричной нагрузки, с учетом известных фазных напряжений можно определить по формуле:

О важности нейтрали и «перекосе фаз»

Хотя при абсолютно симметричной нагрузке питание потребителей возможно по трем проводам линейными напряжениями даже в отсутствие нейтрали, тем не менее если нагрузки на фазах не строго симметричны, нейтраль всегда обязательна.

Если же при несимметричной нагрузке нейтральный провод оборвется, либо его сопротивление по какой-то причине значительно возрастет, произойдет «перекос фаз», и тогда нагрузки на трех фазах могут оказаться под разными напряжениями — от нуля до линейного — в зависимости от распределения сопротивлений нагрузок по фазам в момент обрыва нейтрали.

А ведь нагрузки номинально рассчитаны строго на фазные напряжения, значит что-то может выйти из строя. Особенно перекос фаз опасен для бытовой техники и электроники, поскольку из-за этого может не просто перегореть какой-нибудь прибор, но и случиться пожар.

Проблема гармоник кратных третьей

Наиболее часто бытовая и другая техника оснащается сегодня импульсными блоками питания, причем без встроенной схемы коррекции коэффициента мощности. Это значит, что моменты потребления ограничиваются тонкими импульсными пиками тока вблизи вершины сетевой синусоиды, когда конденсатор выходного фильтра, установленный после выпрямителя, резко и быстро подзаряжается.

Когда таких потребителей к сети подключено много, возникает высокий ток третьей гармоники основной частоты питающего напряжения. Данные токи гармоник (кратных третьей) суммируются в нейтральном проводнике и способны перегрузить его, несмотря на то, что на каждой из фаз потребляемая мощность не превышает допустимой.

Проблема особенно актуальна в офисных зданиях, где размещено на небольшом пространстве много разной оргтехники. Если бы во всех встроенных импульсных блоках питания имелись схемы коррекции коэффициента мощности, это бы решило проблему.

Треугольник

Соединение по схеме «треугольник» предполагает со стороны генератора соединение конца проводника первой фазы с началом проводника второй фазы, конца проводника второй фазы с началом проводника третьей фазы, конца проводника третьей фазы с началом проводника первой фазы — получается замкнутая фигура — треугольник.

Линейные и фазные напряжения и токи при симметричной нагрузке, применительно к соединению «треугольник», соотносятся следующим образом:

Мощность в трехфазной цепи при соединении треугольником, в условиях симметричной нагрузки, определяется следующим образом:

В нижеприведенной таблице отражены стандарты фазных и линейных напряжений для разных стран:

Проводники разных фаз трехфазной сети, а также нейтральные и защитные проводники традиционно маркируют собственными цветами.

Так поступают для того, чтобы предотвратить поражение электрическим током и обеспечить удобство обслуживания сетей, облегчить их монтаж и ремонт, а также сделать стандартизированной маркировку фазировки оборудования: порядок чередования фаз порой очень важен, например для задания направления вращения асинхронного двигателя, режима работы управляемого трехфазного выпрямителя и т. д. В разных странах цветовая маркировка различна, в некоторых совпадает.

Трехфазный ток. Сущность трехфазной системы

Многофазными системами э. д. с. называют в электротехнике системы, состоящие из нескольких переменных э. д. с. равной частоты и амплитуды, которые сдвинуты относительно друг друга по фазе на угол

2π/n

(где n —число фаз).

Многофазная система э. д. с. может быть получена, если на статоре генератора переменной э. д. с. разместить несколько одинаковых изолированных обмоток, сдвинутых относительно друг друга на равные углы. При вращении ротора его магнитное поле пересекает витки обмоток статора и наводит в них переменную э. д. с.

Как следует из рисунка, если э. д. с., наводимая в обмотке 1, изменяется по закону

где ω — угловая скорость вращения ротора, то закон изменения э. д. с. в обмотке 2 будет:

причем угол сдвига фаз

φ= 2π/n

где n — число обмоток, размещенных на статоре.

Совокупность электрических цепей, имеющая многофазные источники э. д. с., называется многофазной электрической системой, а отдельные ее части называют фазами. Так, например, отдельные обмотки генераторов, многофазных трансформаторов и т. п. называются фазами. Многофазная система называется несвязанной, если отдельные ее фазы не являются электрически связанными

Многофазная система называется связанной, если ее отдельные фазы электрически соединены друг с другом

Практически применяются только связанные системы, причем наиболее распространенной является трехфазная связанная система.

Трехфазной системой называется система, в которой действуют три одинаковые по амплитуде э. д. с, сдвинутые относительно друг друга на угол 2π/3=120 0 .

Трехфазная система впервые разработана и практически применена выдающимся русским инженером-электриком Доливо-Добровольским.
Основное преимущество трехфазной системы перед однофазной состоит в том, что она обеспечивает передачу энергии с меньшими потерями и с меньшим расходом материала проводов (при условии передачи одинаковых мощностей). Кроме того, трехфазная система позволяет получить вращающееся магнитное поле.

Комментарии могут оставлять только зарегистрированные пользователи

Трёхфазная система электроснабжения

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Содержание

  • 1 Описание
  • 2 Преимущества
  • 3 Схемы соединений трехфазных цепей
    • 3.1 Звезда
      • 3.1.1 Линейные и фазные величины
      • 3.1.2 Мощность трёхфазного тока
      • 3.1.3 Последствия отгорания (обрыва) нулевого провода в трёхфазных сетях
      • 3.1.4 Проблема гармоник, кратных третьей
    • 3.2 Треугольник
      • 3.2.1 Соотношение между линейными и фазными токами и напряжениями
      • 3.2.2 Мощность трёхфазного тока при соединении треугольником
    • 3.3 Распространённые стандарты напряжений
  • 4 Маркировка
    • 4.1 Цвета фаз
  • 5 См. также
  • 6 Примечания
  • 7 Ссылки

Описание

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C [1] .

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В)Россия, ЕС (ниже 1000 В)ГерманияДания
АL1L1R
BL2L2S
CL3L3T

Преимущества

  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трехфазных цепей

Звезда

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку.

Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.

Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.

Линейные и фазные величины

Напряжение между фазным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя фазными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

I L = I F ; U L = 3 × U F =I_;qquad U_=>times >>

Несложно показать, что линейное напряжение сдвинуто по фазе на π / 6 относительно фазных:

u L a b = u F a − u F b = U F [ cos ⁡ ( ω t ) − cos ⁡ ( ω t − 2 π / 3 ) ] = 2 U F sin ⁡ ( − π / 3 ) sin ⁡ ( ω t − π / 3 ) = 3 U F cos ⁡ ( ω t + π − π / 3 − π / 2 ) ^=u_^-u_^=U_[cos(omega t)-cos(omega t-2pi /3)]=2U_sin(-pi /3)sin(omega t-pi /3)=>U_cos(omega t+pi -pi /3-pi /2)>

u L = 3 U F cos ⁡ ( ω t + π / 6 ) =>U_cos(omega t+pi /6)>

Мощность трёхфазного тока

Для соединения обмоток звездой, при симметричной нагрузке, мощность трёхфазной сети равна:

P = 3 U F I F c o s φ = 3 U L 3 I L c o s φ = 3 U L I L c o s φ I_cosvarphi =3>>>I_cosvarphi =>U_I_cosvarphi >

Последствия отгорания (обрыва) нулевого провода в трёхфазных сетях

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый перекос фаз, в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах, который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пиков синусоиды питающего напряжения на интервалах зарядки конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания. Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1.07.2014), ОСТ 45.188-2001.

Треугольник


Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

I L = 3 × I F ; U L = U F =>times >;qquad U_=U_>

Читать еще:  Основы технологии кирпичной кладки
Мощность трёхфазного тока при соединении треугольником

Для соединения обмоток треугольником, при симметричной нагрузке, мощность трёхфазного тока равна:

P = 3 U F I F c o s φ = 3 U L I L 3 c o s φ = 3 U L I L c o s φ I_cosvarphi =3U_>>>cosvarphi =>U_I_cosvarphi >

Распространённые стандарты напряжений

СтранаЧастота, ГцНапряжение (фазное/линейное), Вольт
Россия50230/400 [2] (бытовые сети)
133/230, 230/400, 400/690, 690/1200 (промышленные сети) [ источник не указан 48 дней ]
Страны ЕС50230/400,
400/690 (промышленные сети)
Япония50 (60)120/208
США60120/208,
277/480
240 (только треугольник)

Маркировка

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Цвета фаз

Каждая фаза в трёхфазной системе имеет свой цвет. Они меняют в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).

Понятие о трехфазном токе и его получении

Трехфазной системой называется совокупность трех однофаз­ных цепей, в которых действуют три ЭДС одинаковой частоты, сдвинутые по фазе одна относительно другой на 120°. Такая система получила наиболее широкое распространение, ибо она позво­ляет при передаче одной и той же мощности получить экономию металла в проводах, уменьшить потери энергии и создать простые и удобные в эксплуатации трехфазные двигатели переменного тока.

На рис. 1.10 показана система, состоящая из трех отдельных генераторов (рис. 1.10, б), и упрощенная схема генератора трех­фазного тока (рис. 1.10, а). Трехфазный генератор имеет три об­мотки, в которых индуктируются три ЭДС, сдвинутые по фазе на 120°. Каждая обмотка называется фазой, а напряжение на фазе — фазным напряжением (Uф). Нагрузка подключается к обмоткам ге­нератора линейными проводами и нулевым проходом, который в некоторых случаях может отсутствовать.

Рис. 1.10. Схема генератора и развернутая диаграмма трехфазного тока:

а — упрощенная схема генератора трехфазного тока; б — схема, состоящая

из трех генераторов; в — диаграмма напряжения генератора

Напряжение между линейными проводами называется линейным напряжением (Un). Ток в фазе генератора или нагрузки называется фазным током, а ток в линейном проводе — линейным током. Обмот­ки генератора и нагрузка могут включаться в «звезду» или в «треу­гольник». На рис. 1.11 показано соединение в «звезду»: начало или концы обмоток генератора соединяют в одну точку. К оставшимся концам обмоток подключают линейные провода, а к общей точке — нулевой провод. Если нагрузка равномерная, то нулевой провод не нужен, ибо он обеспечивает независимость работы фаз при неравно­мерной нагрузке, когда по нему текут уравнительные токи.

а

Линейное напряжение при соединении в «звезду» в √3 раз боль­ше фазного, линейные и фазные токи одинаковы:

Чтобы соединить обмотки генератора в «треугольник», необхо­димо конец первой обмотки соединить с началом второй; конец второй — с началом третьей; конец третьей — с началом первой. Линейные провода подключают к точкам соединения фаз (рис. 1.12).

Рис. 1.11. Схема соединения обмоток генератора и потребителей

При соединении в «треугольник» линейные и фазные напряже­ния равны, а линейный ток в √3 раз больше фазного:

Мощность трехфазной системы складывается из мощностей каждой фазы. Чтобы найти общую мощность, надо по формуле Р= IфUФcosφ определить мощность в каждой фазе и все три мощ­ности сложить. Так поступают при любых нагрузках.

Общая мощность может быть определена по формуле

если нагрузка равномерная, т.е. если сопротивление и характер нагрузки всех трех фаз одинаковы.

Характеристики трехфазного тока

Трехфазная система переменного тока

Электростанции вырабатывают трехфазный переменный ток. Генератор трехфазного тока представляет собой как бы три объединенных вместе генератора переменного тока, работающих так, чтобы сила тока (и напряжение) изменялась у них не одновременно, а с отставанием на 1/3 периода. Это осуществляется за счет смещения катушек генераторов на 120° одна относительно другой (рис. справа).


Каждая часть обмотки генератора называется
фазой. Поэтому генераторы, которые имеют обмотку, состоящую из трех частей, называют трехфазными.

Следует отметить, что термин «фаза» в электротехнике имеет два значения: 1) как величина, которая совместно с амплитудой определяет состояние колебательного процесса в данный момент времени; 2) в смысле наименования части электрической цепи переменного тока (например, часть обмотки электрической машины).

Некоторое наглядное представление о возникновении трехфазного тока дает установка, изображенная на рис. слева.
Три катушки от школьного разборного трансформатора с сердечниками размещаются по окружности под углом 120° по отношению друг к другу. Каждая катушка соединена с демонстрационным гальванометром. В центре окружности на оси укрепляется прямой магнит. Если вращать магнит, то в каждой из трех цепей «катушка — гальванометр» возникает переменный ток. При медленном вращении магнита можно заметить, что наибольшее и наименьшее значения токов и их направления будут в каждый момент во всех трех цепях различными.

Таким образом, трехфазный ток представляет совместное действие трех переменных токов одинаковой частоты, но сдвинутых по фазе на 1/3 периода относительно друг друга.
Каждая обмотка генератора может соединяться со своим потребителем, образуя несвязанную трехфазную систему. Выигрыша от такого соединения нет никакого по отношению к трем отдельным генераторам переменного тока, так как передача электрической энергии осуществляется с помощью шести проводов (рис. справа).

На практике получили два других способа соединения обмоток трехфазного генератора. Первый способ соединения получил название звезды (рис. слева, а), а второй — треугольника (рис. б).

При соединении звездой концы (или начала) всех трех фаз соединяются в один общий узел, а от начал (или концов) идут провода к потребителям. Эти провода называются линейными проводами. Общую точку, в которой соединяются концы фаз генератора (или потребителя), называют нулевой точкой, или нейтралью. Провод, соединяющий нулевые точки генератора и потребителя, называют нулевым проводом. Нулевой провод применяется в том случае, если в сети создается неравномерная нагрузка на фазы. Он позволяет уравнять напряжения в фазах потребителя.

Нулевой провод, как правило, применяется в осветительных сетях. Даже при наличии одинакового количества ламп равной мощности во всех трех фазах равномерная нагрузка не сохраняется, так как лампы могут включаться, выключаться не одновременно во всех фазах, могут перегорать, и тогда равномерность нагрузки фаз будет нарушена. Поэтому для осветительной сети применяется соединение в звезду, которая имеет четыре провода (рис. справа) вместо шести при несвязанной трехфазной системе.

При соединении в звезду различают два вида напряжения: фазное и линейное. Напряжение между каждым линейным и нулевым проводом равно напряжению между зажимами соответствующей фазы генератора и называется фазным ( U ф ), а напряжение между двумя линейными проводами — линейным напряжением ( U л ).

Между фазными и линейными напряжениями можно установить соотношение:

если рассмотреть треугольник напряжения (рис. слева).

Ил= ^ч-Т^-г-Т^-сойШ^ Сф-л/2 + 2-со5б0° = л/3 -Ц,

На практике широкое распространение получили трехфазные цепи с нейтральными проводами при напряжениях U Л = 380 В; U Ф = 220 В.

Поскольку в нулевом проводе при симметричной нагрузке сила тока равна нулю, то ток в линейном проводе равен току в фазе.
При неравномерной нагрузке фаз по нулевому проводу проходит уравнительный ток относительно малой величины. Поэтому сечение этого провода должно быть значительно меньше, чем у линейного провода. В этом можно убедиться, если включить четыре амперметра в линейные и нулевой провода. В качестве нагрузки удобно использовать обычные электрические лампочки (рис. справа).

При одинаковой нагрузке в фазах ток в нулевом проводе равен нулю и надобность в этом проводе отпадает (например, равномерную нагрузку создают электродвигатели). В этом случае производят соединение в «треугольник», которое представляет собой последовательное соединение друг с другом начал и концов катушек генератора. Нулевой провод в этом случае отсутствует.
При соединении обмоток генератора и потребителей «треугольником» фазные и линейные напряжения равны между собой,
т.е. U Л = U Ф , а линейный ток в √3 раз больше фазного тока I Л = √3 . I Ф

Соединение треугольником применяется как при осветительной, так и при силовой нагрузке. Например, в школьной мастерской станки можно включать в звезду или треугольник. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников электрической энергии.
Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение, в раз большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машин. Поэтому фазы трехфазных генераторов почти всегда соединяют звездой. Двигатели же иногда в момент пуска включают звездой, а затем переключают на треугольник.

Особенности трехфазного тока

Время на чтение:

Несмотря на столь широкое применение, немногие знают, что собой представляет трехфазный ток. И это простительно, поскольку не все получали высшее профильное образование по профессии электрика. Поэтому цель этой статьи — рассказать в общих чертах о переменном трехфазном электрическом токе. Людям, не связанным с техническим науками, а также начинающим специалистам, будет интересно узнать, что это такое, где применяется, в том числе о его положительных и отрицательных сторонах.

Что такое трехфазный ток

Электрической цепью с трехфазной системой называют схему подключения, к которой подводят три жилы кабеля. В каждой действуют переменные электродвижущие силы одинаковых частот, но сдвинутых по фазе на одну треть периода относительно друг друга. На языке физике сдвиг выглядит как alpha = 2*pi/3. Каждую отдельную цепь всей схемы в целом называют фазой. А поскольку их три, то и вся схема получила соответствующее название.

Принцип действия трехфазного генератора

Практически все генераторы электрических станций вырабатывают трехфазный ток. Они совмещают в себе конструкцию одновременной инициации возбуждения сдвинутых относительно друг друга электродвижущих сил. В его устройство входят три независимых якоря, расположенных на статоре установки и удаленных друг от друга на одну треть окружности. В центре размещается элемент индукции, представленный как постоянный магнит.

На рисунке видно отличие трехфазного тока от однофазного. На схеме показаны три катушки, которые сами по себе являются независимыми генераторами напряжения. Если включить каждую из них в отдельную сеть со своей нагрузкой, то они способны питать электричеством любые приборы.

Однако продолжая логику схематического подключения проводки, для общего электроснабжения оборудования-приемника потребуется шесть кабелей. С точки зрения рациональности, такая цепь будет громоздкой и не экономной. Поэтому катушки соединяют таким образом, чтобы обойтись всего тремя или четырьмя кабелями. Такую систему называют трех- и четырехжильной, одна из которых нулевая, то есть не находится под токовым напряжением.

Подключение звездой

Зачем нужен трехфазный ток

Однофазный и трехфазный переменный ток широко применяются в промышленной и бытовой сфере. Однако в последнее время все больше потребителей предпочитают отказываться от первого и склоняются к последнему.

И дело даже не в увеличении мощности и включении большего количества электрического оборудования. Порой разница между силовой нагрузкой даже не заметна, а при определенных параметрах сети входная мощность для обоих цепей может быть одинаковой.

Основным потребителем является трехфазное оборудование. В эту группу входит:

  • асинхронные электроприводы;
  • нагревательные установки;
  • промышленное оборудование.

Наиболее частым потребителем трехфазного тока является асинхронный двигатель. Именно в составе этой сети они показывают наилучшие рабочие параметры, высокое КПД при относительно низких энергозатратах.

Асинхронный двигатель

К тому же, приводы, обогреватели, котлы, электрические печи, обогреватели не перекашивают фазы. Для чувствительного оборудования такое проседание — тема очень щекотливая.

Обратите внимание! В реальности обеспечить одинаковую нагрузку на всех трех фазах невозможно. Соответственно, напряжение всегда будет неодинаковым.

Поскольку в помещении присутствует еще несколько потребителей, необходима дополнительная система, которая сможет распределять нагрузку равномерно по всем приемникам. Для этого нужна трехкабельная цепь. Включение нагрузки в сеть трехфазного тока происходит к той цепи, на которую приходится меньше всего потребителей.

Схема подключения трехфазного тока

Однако распределительные системы для цепей трехфазного тока получаются очень громоздкими и занимают много места. Оно требует дополнительных систем безопасности, так как напряжение таких сетей составляет 380 В. При коротком замыкании ток будет в разы больше, чем при привычных нам 220 В.

Преимущества и недостатки

Как и все материальное, трехфазный ток имеет свои плюсы и минусы. К положительным моментам применения систем с тремя или четырьмя проводами относится:

  • экономичность. Для передачи электроэнергии на большие расстояния используют жилы из цветных металлов, имеющих небольшие удельные сопротивления. Вольтаж делят пропорционально количеству кабелей. За счет распределения нагрузок инженеры могут уменьшить количество проводов и их сечение, что при стоимости редких материалов дает заметную экономию;
  • эффективность. Параметры мощности трехфазных трансформаторов на порядок выше однофазных при меньших размерах магнитопровода;

Трансформатор 3-фазного тока

  • простота. При одновременном подключении потребителей к трехфазной системе генерируется дополнительное электромагнитное поле. Эффект сдвига фаз позволил создать простые и надежные бесколлекторные электродвигатели, ротор которых выполнен по принципу обычной болванки и устанавливается на шариковые подшипники. Асинхронные электроприводы с короткозамкнутым ротором широко применяются в качестве силовых агрегатов. Главным преимуществом таких моторов является возможность менять направления вращения оси путем переключения на разные фазные провода;
  • вариативность. В цепях с несколькими фазами существует возможность получать разные напряжения. Пользователь сможет менять мощность нагревателя или сервопривода, переключившись с одного кабеля на другой;
  • уменьшение стробоскопического эффекта. Он достигается за счет независимого подключения разных ламп к отдельным фазам.

Наравне с достоинствами трехфазный ток имеет свои недостатки. Они включают в себя:

  • сложность подключения. Для подведения трехфазной сети к частному или промышленному зданию необходимо получить специальное разрешение и технические условия от локальной компании по энергосбыту. Это мероприятие достаточно затратное и хлопотное. Даже при выполнении всех условий положительный результат не всегда гарантирован;
  • применения усиленных систем безопасности. В трехфазной сети подается напряжение 380 В, поэтому необходимы дополнительные устройства защиты от поражения электрическим током и короткого замыкания, которое может привести к пожару. В таких случая на входе ставят еще один трехполюсный автоматический выключатель с большими номинальными характеристиками. Он поможет избежать возгорания в случае замыкания цепи;
  • необходимость монтажа вспомогательных модулей для ограничения перенапряжения в распределительном щите. Он необходим на случай обрыва нулевого кабеля, что приведет к увеличению напряжения в одной из фаз.

Переход на трехфазный ток целесообразен для владельцев помещений, площадь которых больше 100 кв. метров. Это относится к частным домам и к производственным зданиям. Такая схема подключения позволит перераспределять равномерно нагрузку по всем потребителям и избежать скачков напряжения.

Чем отличается трехфазный ток от однофазного

Основное отличие однофазной цепи от трехфазной:

  • однофазный ток подается потребителям через один проводник, трехфазный — через три;
  • для завершения сети необходим нулевой кабель, поэтому в цепях с одной фазой их два, а в трех — четыре;
  • мощность повышается с увеличением количества фаз;
  • простота сетевой конструкции;
  • в однофазной цепи появляются перепады напряжения с увеличением количества потребителей электроэнергии;
  • при отключении одной жилы в трехфазном, ток продолжает течь в оставшихся двух проводах. В однофазном напряжение полностью пропадает.

Обратите внимание! Трехфазная система позволяет использовать разные номиналы напряжений при питании оборудования с разными параметрами мощности.

Почему обычно три фазы, а не четыре

Таким вопросом задаются практически все начинающие электрики. По сути, количество фаз не ограничено. Их может быть 1, 2, 3, 4 и даже 10. Однако широкое применение получили трехфазные системы. Это связано с тем, что такой цепи достаточно для решения большинства задач.

Такие системы в большей степени используют для силовых установок на производстве. Вращение ротора составляет 360 градусов, а сдвиг по фазам составляет 120 градусов. Его вполне достаточно, чтобы раскрутить якорь до нужных оборотов и получить с двигателя нужную мощность. Увеличение количества фаз лишь повысит стоимость самой установки, поскольку потребует установки дополнительных катушек и подведения лишних кабелей.

Важно! Добавление фаз к существующим трем не повышает КПД агрегата, не увеличивает его мощность. С точки зрения рациональности, это лишь добавляет стоимость установок при сохранении прежних параметров работы.

График трехфазного тока

Ниже представлен график трехфазного тока.

График трехфазного тока

На рисунке видно, что каждая ветка имеет одинаковую частоту, но в каждой цепи периода прохождения тока через проводник сдвинуты по фазе на одну треть.

Система подключения

Существует два вида подключения катушек в электрогенераторе:

  • звездой. Суть системы заключается в соединении всех концов катушек в одну точку, которая является нейтральной. Нулевой провод и остальные три провода подключаются к потребителю;
  • треугольником. При таком способе каждый вывод обмотки соединяется со следующим. В результате они образуют замкнутый на отдельных контактах треугольник, а линейные кабели соединяются с оборудованием.

Схема подключения «Звезда» и «Треугольник»

На рисунке показано схематическое подключение катушек в электрогенераторе.

Трехфазная система подачи тока потребителям приобрела широкую популярность благодаря эффективности и экономичности. Также она позволяет повышать коэффициент полезного действия силового оборудования, его мощность, упрощая при этом его конструкцию.

Однофазные и трехфазные электрические цепи

Однофазный переменный ток

Переменный электрический ток по сравнению с постоянным имеет большое преимущество в быту и на производстве. Преимущество переменного тока обусловлено в первую очередь в том, что напряжение и силу тока можно в очень широких пределах преобразовывать (трансформировать) почти без потерь энергии и передавать на большие расстояния. Именно поэтому переменный ток и напряжение широко применяется в промышленности.

В промышленности (на электростанциях) переменный электрический ток вырабатывается генераторами переменного тока, в которых используется явление электромагнитной индукции. Простейшая схема получения переменного тока и напряжения показана на рис.7:

Проволочная рамка (виток) вращается в однородном магнитном потоке с постоянной скоростью. Изменения проходящего через поверхность рамки (витка) магнитного потока будет происходить непрерывно, при этом поток создаваемый электромагнитом (индуктивной катушкой и стальным сердечником), будет оставаться неизменным. В рамке возникает ЭДС индукции, которую измеряет вольтметр.

Для наглядного убеждения рассмотрим положения рамки в разные моменты времени на Рис. 8. В начальный момент (Рис. 8, а) плоскость рамки перпендикулярна магнитным линиям, соответственно магнитный поток через рамку максимален, через четверть периода (Рис. 8, в) рамка расположена параллельно магнитным линиям и магнитный поток равен нулю:

Но ЭДС индукция определяется не самим потоком, а скоростью его изменения, в первом положении рамки (Рис. 8, а) ЭДС будет равна 0, а соответственно в третьем положении (Рис. 8, в) ЭДС индукции будет иметь максимальное значение. При других значениях ЭДС индукции меняет также своё значение и знак, т.е. будет переменной.

Ток, возникающий в рамке под действием ЭДС индукции, с течением времени будет изменяться как и сама ЭДС. Такой ток называется переменным синусоидальным током.

Промежуток времени, в течение которого ток совершает одно полное колебание (один оборот), называется периодом переменного тока. Период колебания обозначают Т, число колебаний за 1 сек. Называют частотой тока и обозначается буквой f. Единицей частоты обозначают в герцах (Гц):

f = 1/Т или Т = 1/f.

Заметим, что в нашей стране и в большинстве других стран в промышленности и в быту применяют переменный ток с частотой 50 Гц.

Например, если генератор вращается со скоростью 3000 оборотов в минуту (60 сек.), и имеет один полюс (Рис. 7), то тогда:

f = 3000/60 = 50 Гц.

Уравнения и графики синусоидальных величин

Рассмотрим более подробно анализ электрических цепей переменного тока синусоидальных величин с помощью уравнений и графиков.

В любой точке воздушного зазора, положение которой определяется углом β, отчитанным от нейтральной плоскости (нейтрали) против движения часовой стрелки, магнитная индукция выражается уравнением:

В = Вmsinβ, где

В – магнитная индукция; Вm – амплитудная (наибольшая величина) магнитной индукции; sinβ – угол магнитного поля.

Нейтральная плоскость перпендикулярна оси полюсов и делит магнитную систему на симметричные части, из которых одна условно северная, а другая — южная. Наибольшую величину (см. Рис. 9) магнитная индукция имеет под серединой полюсов, т.е. при углах β = 900 и β = 2700, а на нейтрали β = 00 и β = 1800 магнитная индукция равна нулю.

Приведем характеристики и определения синусоидальных величин к синусоидальной ЭДС:

Мгновенная величина (или мгновенное значение) ЭДС (е) – величина ЭДС в рассматриваемый момент времени. Мгновенное ЭДС определяется уравнением:

e=Еmsin (ωt ± ψ)

при подстановке в него времени t, прошедшего от начала отчета до данного момента.

Амплитуда Еm – наибольшая величина, которую принимает ЭДС в течении периода. Амплитуда является одной из мгновенных величин, которая соответствует аргументу ωt ± ψ, равному + 900, где k любое целое число или нуль.

Фаза (фазовый угол ωt ± ψ) – аргумент синусоидальной ЭДС, отчитываемый от ближайшей предшествующей точки перехода ЭДС через нуль к положительному значению. Фаза в любой момент времени определяет стадию гармонического изменения синусоидальной ЭДС.

Начальная фаза ψфаза синусоидальной ЭДС в начальный момент времени. Сдвиг по фазе – две синусоидальные величины, имеющие разные начальные фазы. Угловая частота ω, (или угловая скорость) – угол поворота (α) генератора в ед. времени (t). За время одного периода Т угол поворота ротора равен в радианах, следовательно:

ω = α/t = 2π/Т = 2π/f.

Трехфазные цепи Основные понятия:

Многофазной системой называется совокупность электрических цепей, называемых фазами, в которой действуют синусоидальные напряжения одной частоты, отличающиеся друг от друга по фазе. Чаще всего применяются симметричные многофазные системы, напряжения которых равны по величине и сдвинуты по фазе на угол 2π/m, где m – число фаз. Наибольшее распространение имеет трехфазная система (созданная русским ученым М.О. Доливо-Добровольским в 1891 году), он также изобрел и разработал все звенья этой системы (генераторы, трансформаторы, линии электропередач и двигатели трехфазного тока). Трехфазной системой называют систему, состоящую из трех цепей, в которой действуют переменные ЭДС, имеющие одинаковые амплитуды и частоту, но сдвинутые по фазе друг относительно друга на 120° или на 1/3 периода (так называемый электрический угол) см. Рис. 10.:

Для получения связанной трехфазной цепи (несвязанные трехфазные цепи в настоящее время не применяются) используют трехфазный генератор. Простейший трехфазный генератор схематически показанный на Рис. 11, где обмотки фаз сдвинуты друг относительно друга на угол 120°/р, где р — число пар полюсов. В случае двухполюсного генератора (Рис. 11) р = 1 и угол равен 120° (2р/3). При вращении ротора в силу идентичности трех обмоток генератора в них наводится ЭДС сдвинуты по фазе по отношению друг к другу на одну треть периода. Векторы, изображающие эти ЭДС, равны по модулю и расположены под углом 120° (2р/3), см. Рис. 12.:

Для примера приведем формулы расчет потерь электроэнергии в линии:

1. Проверка линии по длительно допустимому току:

Ip= Рр / (√3 х Uн х cos φ), (А); где:

2. Расчет линии на потерю напряжения:

∆U% = (100 / ﻻ х Uн²) х (Рр х Lo / Sпр), (∆U%); где: 3. Расчет линии на потерю мощности: ∆Р(%) = Ip²х 3 х (ro x Lo) / Pp х 100, (∆Р); где: 4. Расчет линии на потерю полной мощности: S кВА = P/cos φ, (кВА).

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Трехфазный электрический ток

Трехфазная цепь представляет собой совокупность электрических цепей, в которых действуют три синусоидальные э.д.с. одинаковой частоты, отличающиеся по фазе одна от другой ( φ = 120 о ) и создаваемые общим источником энергии. Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, слово фаза в электротехнике имеет два значения – угол φ и часть многофазной системы (отдельный фазный провод).

Основные преимущества трехфазной системы: возможность простого получения кругового вращающегося магнитного поля (это позволило создать электродвигатели переменного тока), экономичность и эффективность (мощность можно передать по трем фазным проводам без применения четвертого общего провода -нейтрали), а также возможность использования двух различных эксплуатационных напряжений в одной установке (фазного и линейного, которые обычно составляют 220 В и 380 В, соответственно).

История появления трехфазных электрических цепей связана с именем М.С. Доливо-Добровольского Петербургского ученого, который в 1886 г., доказав, что многофазные токи способны создавать вращающееся магнитное поле, предложил (запатентовал) конструкцию трехфазного электродвигателя.

Трехфазный ток является простейшей системой многофазных токов, способных создавать вращающееся магнитное поле. Этот принцип положен в основу работы трехфазных электродвигателей.

Предложив конструкцию электродвигателя переменного тока, М.С. Доливо-Добровольский разработал и все основные элементы трехфазной электрической цепи. Трехфазная цепь состоит из трехфазного генератора, трехфазной линии электропередач и трехфазных приемников.

В результате предложенной трехфазной системы электрического тока стало возможным эффективно преобразовывать электрический ток в механическую энергию.

Электрическую энергию трехфазного тока получают в синхронных трехфазных генераторах (рис. 27). Три обмотки 2 статора 1 смещены между собой в пространстве на угол 120°. Их начала обозначены буквами А, В, С, а концы – x, y, z. Ротор 3 выполнен в виде постоянного электромагнита, магнитное поле которого возбуждает постоянный ток I, протекающий по обмотке возбуждения 4. Ротор принудительно приводится во вращение от постороннего двигателя. При вращении магнитное поле ротора последовательно пересекает обмотки статора и индуктирует в них ЭДС, сдвинутые (но уже во времени) между собой на угол 120°.

Трехфазный синхронный генератор

Для симметричной системы ЭДС (рис. 28) справедливо

Волновая и векторная диаграммы симметричной системы ЭДС

На диаграмме изображена прямая последовательность чередования фаз (пересечение ротором обмоток в порядке А, В, С). При смене направления вращения чередование фаз меняется на обратное — А, С, В. От этого зависит направление вращения трехфазных электродвигателей.

Существует два способа соединения обмоток (фаз) генератора и трехфазного приемника: «звезда» и «треугольник».

В генераторах трехфазного тока электрическая энергия генерируется в трех одинаковых обмотках, соединенных по схеме звезда. Чтобы сэкономить на проводах линии передачи электроэнергии от генератора к потребителю тянутся только три провода. Провод от общей точки соединения обмоток не тянется, т.к. при одинаковых сопротивлениях нагрузки (при симметричной нагрузке) ток в нем равен нулю.

Схема замещения трехфазной системы, соединенной «звездой»

Согласно первому закону Кирхгофа можно записать IO = IА+ IВ + IС.

При равенстве ЭДС в фазных обмотках генератора и при равенстве сопротивлений нагрузки (т.е. при равенстве значений токов IА,IВ,IС)в представленной на рисунке системе, с помощью векторных диаграмм можно показать, что результирующий ток IO в центральном проводнике будет равен нулю. Таким образом, получается, что в симметричных системах (когда сопротивления нагрузок одинаковы), центральный провод может отсутствовать и линия для передачи системы трехфазного тока может состоять только из трех проводов.

В распределительных низковольтных сетях, в которых присутствует много однофазных потребителей, обеспечение равномерной нагрузки каждой фазы становится не возможным, такие сети делаются четырехпроводными.

Для обеспечения электробезопасносности принято низковольтные потребительские сети (сети

В системах электроснабжения, в частности в генераторах и трансформаторах подстанций используется преимущественно соединения звездой.

Для низковольтных сетей (с напряжением менее 1000В) основным стандартным линейным (между фазными проводами) напряжением принимается напряжение 380 В, при этом фазное напряжение (между фазным проводом и центральным) будет составлять 220 В.

Низковольтные сети являются потребительскими сетями разного назначения, не обязательно питающими трехфазные двигатели. В таких сетях для питания различных потребителей могут быть использованы разные фазы по отдельности. В результате нагрузка разных фаз окажется неодинаковой. Кроме того, с целью техники безопасности, ПУЭ (правилами устройства электроустановок) устанавливается, что низковольтные трехфазные электрические сети должны устраиваться четырехпроводными, с глухозаземленной нейтралью. Для этого схема понижающего трансформатора (понижающей подстанции) обычно выглядит следующим образом.

(Высокое напряжение

Т.е. центральный, называемый при этом «нулевым», провод на вторичной обмотке трехфазного трансформатора подключается к заземляющему устройству и подводится к потребителям наряду с фазными проводами.

3. Дифференциальная защита трансформаторов.

Дифференциальная защита используется в качестве главной защиты силовыхтрансформаторов от одно- и междуфазных внутренних витковых повреждений, на ошиновке и вводах. Она характеризуется абсолютной селективностью между соответствующими трансформаторами тока, отличается высокой чувствительностью и не реагирует на любые повреждения и КЗ вне зоны действия — на соседних элементах системы электроснабжения (генераторах, линиях, двигателях и т.д.), и исполняется без выдержки времени.

Область применения

Вследствие сложности ее выполнения, дифференциальную защиту устанавливают:

— трансформаторах, работающих параллельно, у которых номинальная мощность равна 4МВА и выше, и 1МВА, если ТО не имеет нормируемый коэффициент чувствительности, выдержка времени МТЗ составляет более 0,5сек;

— на одиночных трансформаторах, номинальной мощностью 6,3МВА и более.

Принцип работы ДЗТ основан на измерение разности токов 2-х (или 3-х) сторон силового трансформатора. С 2-х или 3-х сторон устанавливают трансформаторы тока, обмотки которых соединяют последовательно. При этом параллельно им подключают специальное реле тока. В нормальном режиме вторичные токи в обмотках трансформаторов протекать не будут, т.е. их разность равна 0. При любых повреждениях в трансформаторе или в зоне действия защиты вторичные токи меняют свое направление, начинают течь к нему, что приводит в действие защиту на отключение трансформатора со всех (2-х или 3-х) сторон.

Реализуется ДЗТ с помощью:

— реле с торможением ДЗТ-11;

— полупроводниковых реле (РСТ-15, RET-316 и др.);

— микропроцессорных защит (шкафы RET и др.).

Особенности, оказывающие влияние на выполнение ДЗТ:

1. Отличие номинальных напряжений и токов сторон трансформаторов.

2. Различными схемами соединения обмоток силовых трансформаторов.

3. Наличие небаланса во вторичной дифференциальной цепи при внешних однофазных КЗ.

4. Бросок намагничивающего тока при возобновлении подачи напряжения после отключении КЗ или включении трансформатора.

4. Технические мероприятия, обеспечивающие безопасное производство работ.

Техническими мероприятиями, обеспечивающие безопасность работв действующих электроустановках являются:

производство необходимых отключений и принятие мер, препятствующих подаче на-пряжения на место работы вследствие ошибочного или самопроизвольного включения коммутационных аппаратов;

вывешивание запрещающих плакатов на приводах ручного и на ключах дистанционно-го управления коммутационных аппаратов;

проверка отсутствия напряжения на токоведущих частях, которые должны быть зазем-лены для защиты людей от поражения электрическим током;

установка заземления (включены заземляющие ножи, а там, где они отсутствуют, уста-новлены переносные заземления);

вывешивание указательных плакатов «Заземлено», ограждение при необходимости ра-бочих мест и оставшихся под напряжением токоведущих частей, вывешивание предуп-реждающих и предписывающих плакатов [4].

Отключения.При подготовке рабочего места должны быть отключены: токоведущие части, на которых будут производиться работы; не огражденные токоведущие части, к ко-торым возможно случайное приближение людей, механизмов и грузоподъемных машин на расстояние менее регламентированного; цепи управления и питания приводов, закрыт воздух в системах управления коммутационными аппаратами, снят завод с пружин и гру-зов у приводов выключателей и разъединителей. Отключение производят таким образом, чтобы электрооборудование или часть электроустановки со всех сторон были отделены от токоведущих частей, на которые может быть подано напряжение. Причем в электроуста-новках напряжением U1000 В с каждой стороны устанавливается видимый разрыв. Ви-димый разрыв может быть создан отключением разъединителей, снятием предохраните-лей, отключением отделителей и выключателей нагрузки, отсоединением или снятием шин и проводов приводы разъединителей, выключателей и других коммутирующих уст-ройств, которыми может быть подано напряжение к месту работы, для предотвращения их ошибочного или самопроизвольного включения запирают в отключенном положении. Си-ловые трансформаторы и трансформаторы напряжения, связанные с выделенным для ра-бот участком электроустановки, должны быть отключены и схемы их разобраны также со стороны других своих обмоток для исключения возможности обратной трансформации.

Вывешивание запрещающих плакатов.Плакаты вывешиваются с целью предупреж-дения ошибочных действий персонала и случайной подачи напряжения на работающих. Плакаты вывешиваются на приводах (рукоятках приводов) коммутационных аппаратов (выключателях, отделителях, разъединителях, рубильниках, автоматах, у места снятых предохранителей), на задвижках, закрывающих доступ воздуха в пневматические разъеди-нители, на ключах и кнопках дистанционного и местного управления. На приводах разъ-единителей, которыми отключена для работ воздушная или кабельная линия электропере-дачи, независимо от числа работающих бригад, плакат «Не включать! Работа на линии» вывешивается и снимается по указанию оперативного персонала, ведущего учет числа ра-ботающих на линии бригад.

Проверка отсутствия напряжения.Такая проверка осуществляется перед началом работ со снятием напряжения. Отсутствие напряжения между всеми фазами и каждой фа-зы по отношению к земле и нулевому проводу на отключенной электроустановке опреде-ляет работник из числа оперативного персонала. В установках U≥110 В отсутствие напря-жения проверяют при помощи указателя напряжения. Перед использованием указателя проверяют его исправность. Для этого указатель подносят к токоведущим частям заведо-мо находящимся под напряжением. В электроустановках напряжением U35 кВ для про-верки отсутствия напряжения можно пользоваться изолирующей штангой, прикасаясь ею несколько раз к токоведущим частям. Признаком отсутствия напряжения является отсут-ствие искрения и потрескивания. Все действия необходимо производить в диэлектричес-ких резиновых перчатках.

Установка заземления.Заземления применяют для защиты работающих от пораже-ния электрическим током в случае ошибочной подачи напряжения. Устанавливать зазем-ления на токоведущие части необходимо непосредственно после проверки отсутствия на-пряжения. Его накладывают на токоведущие части всех фаз отключенной для производ-ства работ части электроустановки со всех сторон, откуда может быть подано напряжение. Как правило, с каждой стороны накладывается по одному заземлителю.

На двухпутных участках и станциях электрифицированных железных дорог перемен-ного тока при отключении питания лишь с одного пути принято завешивать по две зазем-ляющие штанги с каждой стороны возможного появления напряжения. Это обусловлено тем, что при непрекращающемся движении поездов под воздействием динамических уси-лий, передаваемых по проводам контактной подвески, может на мгновение произойти срыв контакта заземляющей штанги с элементов контактной сети, которая окажется под наведенным напряжением (потенциалом). Величина наведенного напряжения значительно выше допустимых для человека значений.

5. Каким напряжением должны испытываться диэлектрические перчатки.

Испытания перчаток
В эксплуатации проводят только электрические испытания перчаток.

Один раз в 6 месяцев перчатки необходимо испытывать повышенным напряжением 6 кВ в течение 1 минуты, ток через перчатку при этом не должен превышать 6 мА.

При испытании диэлектрические перчатки погружают в металлический сосуд с водой, имеющий температуру 25 + 10°С, которая наливается также внутрь этих изделий. Уровень воды как снаружи, так и внутри изделий должен быть на 50 мм ниже верхнего края перчаток.

Выступающие края перчаток должны быть сухими. Один вывод испытательного трансформатора соединяют с сосудом, другой заземляют. Внутрь перчаток опускают электрод, соединенный с заземлением через миллиамперметр. При испытании переключатель «П» сначала устанавливают в положение А для того, чтобы по сигнальным лампам определить отсутствие или наличие пробоя. При отсутствии пробоя переключатель устанавливают в положение Б для измерения тока, проходящего через перчатку. Изделие бракуют, если ток, проходящий через него, превышает норму или происходят резкие колебания стрелки миллиамперметра.

В случае возникновения пробоя отключают дефектное изделие или всю установку.

По окончании испытаний изделия просушивают.

Электрическая прочность резины не менее 10 кВ/мм, а какая толщина перчаток не известна, уровень влажности тоже, но думаю можно считать 20кВ гарантировано не держат, те что на 1кВ и тестовые 9кВ прошедшие .

1. Как обозначаются нулевые рабочие проводники, совмещенные, нулевые защитные и нулевые рабочие проводники.

Фаза тока.

У новичков в мире электрики и домовладельцев иногда возникает вопрос: что такое фаза тока в бытовой электропроводке. Связано это с необходимостью починить какой-либо электроприбор.

В возникшей ситуации наиболее приоритетной задачей мастера должно стать соблюдение правил техники безопасности, а не проявление прикладных навыков и умений. Знание элементарных законов функционирования тока и процессов, проходящих внутри бытовых электроприборов не только поможет справиться с большинством неисправностей, возникающих в них, но и сделает этот процесс наиболее безопасным.

Конструкторы и инженеры делают все возможное, чтобы предотвратить несчастный случай при работе с электричеством в быту. Задача потребителя сводится к соблюдению предписанных норм.

Далее мы рассмотрим:

  • однофазный ток;
  • двухфазный ток;
  • трехфазный ток.

Однофазный ток.

Переменный ток, который получают при помощи вращения в магнитном потоке проводника или системы проводников, соединенных в одну катушку, называется однофазным переменным током.

Как правило, для передачи однофазного тока используют 2 провода. Называются они фазным и нулевым соответственно. Напряжение между этими проводами составляет 220 В.

Однофазное электропитание. Однофазный ток можно подвести к потребителю двумя различными способами: 2-проводным и 3-проводным. При первом (двухпроводном), для подведения однофазного тока используют два провода. По одному протекает фазный ток, другой предназначен для нулевого провода. Таким образом электропитание подведено почти во все, построенные в бывшем СССР, дома. При втором способе для подведения однофазного тока — добавляют ещё один провод. Называется такой провод заземлением (РЕ). Он предназначен для предотвращения поражения человека электрическим током, а так же для отвода токов утечки и предотвращения приборов от поломки.

Двухфазный ток.

Двухфазным электрическим током называется совокупность двух однофазных токов, сдвинутых по фазе относительно друг друга на угол Pi2 или на 90 °.

Наглядный пример образования двухфазного тока. Возьмем две катушки индуктивности и расположим их в пространстве таким образом, чтобы их оси были взаимно перпендикулярны, после чего запитаем систему катушек двухфазным током, как результат получим в системе два магнитных потока. Вектор результирующего магнитного поля будет вращаться с постоянной угловой скоростью, как следствие, возникает вращающееся магнитное поле. Ротор с обмотками, изготовленными в виде короткозамкнутого «беличьего колеса» или представляющий собой металлический цилиндр на валу, будет вращаться, приводя в движение механизмы.

Передают двухфазные токи при помощи двух проводов: двумя фазными и двумя нулевыми.

Трехфазный ток.

Трехфазной системой электрических цепей называется система, которая состоит из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ=2π/3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током. Трехфазный ток легко передаётся на дальние расстояния. Любая пара фазных проводов имеет напряжение 380 В. Пара — фазный провод и нуль — имеет напряжение 220 В.

Распределение трёхфазного тока по жилым домам выполняется двумя способами: 4-проводным и 5-проводным. Четырёхпроводное подключение выполняется тремя фазными и одним нулевым проводом. После распределительного щита для питания розеток и выключателей используют два провода — одну из фаз и нуль. Напряжение между этими проводами будет составлять 220В.

Пятипроводное подключение трехфазного тока — в схему добавляется защитный, заземляющий провод (РЕ). В трёхфазной сети фазы должны нагружаться максимально равномерно, в противном случае может произойти перекос фаз. От того, какая электропроводка используется в доме, зависит какое электрооборудование можно в неё включать. К примеру, заземление обязательно, если в сеть включаются приборы с большой мощностью — холодильники, печи, обогреватели, электронные бытовые приборы — компьютеры, телевизоры, устройства, связанные с водой — джакузи, душевые кабины (вода проводник тока). Трехфазный ток необходим для электропитания двигателей (актуальных для частного дома).

Устройство бытовой электропроводки.

Вначале электроэнергия вырабатывается на электростанции. Затем через промышленную электросеть она попадает на трансформаторную подстанцию, где напряжение преобразуется в 380 вольт. Соединение вторичных обмоток понижающего трансформатора выполнено по схеме «звезда»: три контакта подключены к общей точке «0», а три оставшихся присоединены к клеммам «A», «B» и «C» соответственно. Для наглядности приводится картинка.

Объединенные контакты «0» подсоединяются к заземлительному контуру подстанции. Также здесь ноль расщепляется на:

  • Рабочий ноль (на картинке изображен синим)
  • PE-проводник, выполняющий защитную функцию (линия желто-зеленого цвета)

Нули и фазы тока с выхода понижающего трансформатора подводятся к распределительному щитку жилого дома. Полученная трехфазная система разводится по щиткам в подъездах. В конечном итоге, в квартиру попадает фазовое напряжение 220 В и проводник PE, выполняющий защитную функцию.

Итак, что же такое фаза тока и ноль? Нулем называют проводник тока, присоединенный к заземлительному контуру понижающего трансформатора и служащий для создания нагрузки от фазы тока, подсоединенной к противоположному концу обмотки трансформатора. Кроме того, существует так называемый «защитный ноль» — это PE-контакт, описанный ранее. Он служит для отвода токов при возникновении технической неисправности в цепи.

Этот метод подключения жилых домов к городской электросети отработан десятилетиями, но все же он не идеален. Иногда в вышеописанной системе появляются неисправности. Чаще всего, они связаны с низким качеством соединения на определенном участке цепи или полным обрывом электрического провода.

Что происходит в нуле и фазе при обрыве провода.

Обрыв электрического провода часто обусловлен элементарной рассеянностью мастера – забыть присоединить к определенному прибору в доме фазу тока или ноль – проще простого. Кроме того, нередки случаи отгорания нуля на подъездном щитке в связи с высокой нагрузкой на систему.

В случае обрыва соединения любого электроприбора в доме со щитком, этот прибор перестает работать – ведь цепь не замкнута. При этом не имеет значения, какой именно провод разорван – ноль или фаза тока.

Аналогичная ситуация происходит, когда разрыв наблюдается между распределительным щитком многоквартирного дома и щитом конкретного подъезда – все квартиры, подключенные к щиту подъезда, окажутся обесточены.

Вышеописанные ситуации не вызывают серьезных сложностей и не представляют опасности. Они связаны с обрывом лишь одного проводника и не несут в себе угрозы безопасности электроприборов или людей, находящихся в квартире.

Самая опасная ситуация – исчезновение соединения между заземлительным контуром подстанции и средней точкой, к которой подключена нагрузка внутридомового электрощита.

В этом случае электрический ток пойдет по контурам AB, BC, CA, а общее напряжение на этих контурах – 380 В. В связи с этим возникнет очень неприятная и опасная ситуация – на одном электрощитке может вовсе не быть напряжения, так как хозяин квартиры посчитал нужным отключить электроприборы, а на другом возникнет высокое напряжение близкое к 380 вольтам. Это вызовет выход из строя большинства электроприборов, ведь номинальное напряжение работы для них – 240 вольт.

Конечно, такие ситуации можно предотвратить – существуют достаточно дорогостоящие решения для защиты от скачков напряжения. Некоторые производитель встраивают их в свои приборы.

Как определить ноль и фазу собственными силами.

Для определения нуля и фазы тока существуют специальные отвертки-тестеры.

Она работает по принципу прохождения тока низкого напряжения через тело человека, использующего ее. Отвертка состоит из следующих частей:

  • Наконечник для подключения к фазовому потенциалу розетки;
  • Резистор, снижающий амплитуду электротока до безопасных пределов;
  • Светодиод, загорающийся при наличии потенциала фазы тока в цепи;
  • Плоский контакт для создания цепи сквозь тело оператора.

Принцип работы с отверткой-тестером показан на картинке ниже.

Кроме тестовых отверток, существуют и другие способы определить, к какому контакту розетки подключена фаза тока, а к какому – ноль. Некоторые электрики предпочитают пользоваться более точным тестером, используя его в режиме вольтметра.

Показания стрелки вольтметра означают:

1. Наличие напряжения 220 В между фазой и нулем

2. Отсутствие напряжения между землей и нулем

3. Отсутствие напряжения между фазой и нулем

Вообще-то, в последнем случае стрелка должна показывать 220 В, но в данном конкретном случае центральный контакт розетки не подключен к потенциалу земли.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector