2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристика индуктивности в цепи переменного тока

—>Сайт «Cner» —>

Самоиндукция.

Если в замкнутом контуре течет непостоянный ток, то магнитное поле, создаваемое этим током, также непостоянно. В проводе (катушке) под влиянием изменения ее собственного магнитного потока индуктируется ЭДС, называемая ЭДС самоиндукции. Согласно закону Ленца, ЭДС самоиндукции всегда противоположна вызвавшей ее причине. Если ток в цепи возрастает, то ЭДС самоиндукции стремится замедлить нарастание тока. Если ток в цепи уменьшается, ЭДС самоиндукции препятствует спаданию тока.

Характерным примером явления самоиндукции служат так называемые экстратоки замыкания и размыкания. При питании цепей постоянным током ЭДС самоиндукции возникает и оказывает влияние на изменение тока только в моменты замыкания и размыкания цепи (рис.1).

В проводниках различной формы величина ЭДС самоиндукции различна. Прямолинейный проводник имеет слабое магнитное поле и поэтому ЭДС самоиндукции невелика. Она заметно сказывается только в очень длинных проводниках или при очень быстрых изменениях тока. Значительная ЭДС возникает в проводниках, образующих катушку.

Индуктивность L характеризуется величиной ЭДС самоиндукции, возникающей в катушке при изменении величины тока на один ампер в секунду. Единицей измерения индуктивности является генри (Гн).

При включении в цепь переменного тока катушки индуктивности (рис.2) образуется переменное магнитное поле и в витках катушки наводится ЭДС самоиндукции. Для создания и поддержания переменного тока в цепи катушки необходимо преодолеть действие ЭДС самоиндукции.

Сопротивление, которое вносит в цепь переменного тока катушка индуктивности, называется индуктивным сопротивлением. Индуктивное сопротивление возникает вместе с появлением ЭДС самоиндукции, а величина последней зависит от величины индуктивности L и скорости изменения магнитного потока в катушке, то есть скорости изменения величины тока в ней. Таким образом индуктивное сопротивление зависит от частоты переменного тока. Чем больше частота переменного тока, тем больше индуктивное сопротивление катушки.

Реактивное сопротивление катушки зависит от индуктивности катушки (числа витков, формы и конструкции катушки) и пропорционально частоте переменного тока. Поэтому там, где необходимо получить возможно большее сопротивление переменному току, для увеличения магнитного потока через катушку применяются сердечники из различных магнитных материалов.

В тех случаях, когда необходимо иметь катушку с очень малой индуктивностью, применяют бифилярную намотку (рис.3). При такой намотке в каждых двух соседних витках ток имеет противоположное направление и суммарный магнитный поток равен нулю.

Всякий проводник или катушка обладают также и активным сопротивлением, но иногда для упрощения считают, что катушка обладает только индуктивным сопротивлением. Такую индуктивность считают идеальной.

Предположим, что идеальная индуктивность L подключена к источнику переменного тока в тот момент, когда его напряжение равно амплитудному значению. Ток в катушке не сразу достигнет амплитудного значения (рис. 4), так как возникающая в ней ЭДС самоиндукции uL всегда противоположна по фазе напряжению источника тока u и противодействует нарастанию тока. В результате процесс нарастания тока до амплитудного значения замедляется на время, равное одной четверти периода. Ток в цепи, содержащей чисто индуктивное сопротивление, отстает от напряжения на четверть периода или 90º.

Величина индуктивного сопротивления выражается следующей формулой:

В цепи, содержащей индуктивное и активное сопротивления, сдвиг фаз между током и напряжением меньше 90° и зависит от отношения величины активного сопротивления к величине полного сопротивления R/Z. Из треугольника сопротивлений видно, что R/Z=cos φ. Если XL значительно больше R, сдвиг по фазе будет приблизительно равен 90°, а если наоборот — R значительно превосходит XL, то сдвиг по фазе будет близким к нулю.

Если подсчитать мгновенные значения мощности как произведения мгновенных значений тока и напряжения по формуле p = ui и построить в некотором масштабе график мощности, то мы получим синусоиду, частота которой в два раза больше частоты проходящего по катушке тока. Энергия, поступающая в катушку индуктивности в течение первой и третьей четверти периода, идет на образование магнитного поля. Однако в течение второй и четвертой четверти периода магнитное поле отдает эту запасенную энергию обратно в цепь источника тока (рис. 7).

Как известно, мощность, потребляемая чисто активным сопротивлением, равняется произведению действующих значений тока и напряжения. Мощность. потребляемая чисто индуктивным сопротивлением, за период равна нулю. Для цепи, содержащей R и XL потребляемая мощность зависит от соотношения этих величин. Чем меньше сдвиг фаз между током и напряжением, тем большую мощность потребляет цепь.

Величина мощности определяется по формуле:

где U и I действующие значения тока и напряжения.

Мощность переменного тока, поглощаемую нагрузкой, называют активной и измеряют в ваттах (Вт) или киловаттах (кВт).

Произведение величины тока в цепи, содержащей индуктивность, на величину напряжения на ее зажимах измеряют в вольтамперах (ВА) и называют кажущейся мощностью.

Мощность, отдаваемая источником в течение одной части периода и возвращаемая в течение другой части периода, называется реактивной мощностью. Величина этой мощности определяется по формуле:

Цепь переменного тока с индуктивностью

Дата публикации: 30 марта 2015 .
Категория: Электротехника.

В статье «ЭДС самоиндукции и индуктивность цепи» говорится, что при включении и при всяком изменении тока в электрической цепи вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (ЭДС). Эту ЭДС мы назвали ЭДС самоиндукции. ЭДС самоиндукции имеет реактивный характер. Так, например, при увеличении тока в цепи ЭДС самоиндукции будет направлена против ЭДС источника напряжения, и поэтому ток в электрической цепи не может установиться сразу. И, наоборот, при уменьшении тока в цепи индуктируется ЭДС самоиндукции такого направления, что, мешая току исчезать, она поддерживает этот убывающий ток.

Как нам уже известно, ЭДС самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (числа витков, наличия стальных сердечников).

В цепи переменного тока ЭДС самоиндукции возникает непрерывно, так как ток в цепи непрерывно изменяется.

На рисунке 1 представлена схема цепи переменного тока, содержащей катушку с индуктивностью L без стального сердечника. Для простоты будем считать сначала, что активное сопротивление катушки очень мало и им можно пренебречь.

Рассмотрим внимательнее изменение переменного тока за время одного периода. На рисунке 2 показана кривая изменения переменного тока. Первая половина периода разбита на мелкие одинаковые части.

Рисунок 2. Определение скорости изменения переменного тока

За промежуток времени 1 величина тока изменилась от нуля до 11’. Прирост величины тока за это время равен а.

За время, обозначенное отрезком 12, мгновенная величина выросла до 22’, причем прирост величины тока равен б.

В течение времени, обозначенного отрезком 23, ток увеличивается до 33’, прирост тока показывает отрезок в и так далее.

Так, с течением времени переменный ток возрастет до максимума (при 90°). Но, как видно из чертежа, прирост тока делается все меньше и меньше, пока, наконец, при максимальном значении тока этот прирост не станет равным нулю.

При дальнейшем изменении тока от максимума до нуля убыль величины тока становится все больше и больше, пока, наконец, около нулевого значения ток, изменяясь с наибольшей скоростью, не исчезнет, но тут же появляется вновь, протекая в обратном направлении.

Рассматривая изменение тока в течение периода, мы видим, что с наибольшей скоростью изменяется ток около своих нулевых значений. Около максимальных значений скорость изменения тока падает, а при максимальном значении тока прирост его равен нулю. Таким образом, переменный ток меняется не только по величине и направлению, но также и по скорости своего изменения. Переменный ток, проходя по виткам катушки, создает переменное магнитное поле. Магнитные линии этого поля, пересекая витки своей же катушки, индуктируют в них ЭДС самоиндукции.

На рисунке 3 кривая i показывает изменение переменного тока в катушке. Как было уже указано, величина ЭДС самоиндукции зависит от скорости изменения тока и от индуктивности катушки. Но так как индуктивность катушки в нашем случае остается без изменения, ЭДС самоиндукции будет зависеть только от скорости изменения тока. Выше было показано, что наибольшая скорость изменения тока имеет место около нулевых значений тока. Следовательно, наибольшее изменение ЭДС самоиндукции имеет те же моменты.

Рисунок 3. ЭДС самоиндукции в катушке, включенной в цепь переменного тока

В момент а ток резко и быстро увеличивается от нуля, а поэтому, как следует из вышеприведенной формулы, ЭДС самоиндукции (кривая eL) имеет отрицательное максимальное значение. Так как ток увеличивается, то ЭДС самоиндукции по правилу Ленца должна препятствовать изменению (здесь увеличению) тока. Поэтому ЭДС самоиндукции при возрастании тока будет иметь направление, обратное току (положение б), что следует также из указанной формулы. Скорость изменения тока по мере приближения его к максимуму уменьшается. Поэтому ЭДС самоиндукции также уменьшается, пока, наконец, при максимуме тока, когда изменения его будут равны нулю, она не станет равной нулю (положение в).

Переменный ток, достигнув максимума, начинает убывать. По правилу Ленца ЭДС самоиндукции будет мешать току убывать и, направленная уже в сторону протекания тока, будет его поддерживать (положение г).

При дальнейшем изменении переменный ток быстро убывает до нуля. Резкое уменьшение тока в катушке повлечет за собой также быстрое уменьшение магнитного поля и в результате пересечения магнитными линиями витков катушки в них будет индуктироваться наибольшая ЭДС самоиндукции (положение д).

Во вторую половину периода изменения тока картина повторяется и снова при возрастании тока ЭДС самоиндукции будет мешать ему, имея направление, обратное току (положение е).

При убывании тока ЭДС самоиндукции, имея направление в сторону тока, будет поддерживать его, не давая ему исчезнуть сразу (положение з).

На рисунке видно, что ЭДС самоиндукции отстает по фазе от тока на 90° или на ¼ периода. Так как магнитный поток совпадает по фазе с током, то можно сказать, что ЭДС, наводимая магнитным потоком, отстает от него по фазе на 90° или на ¼ периода.

Нам уже известно, что две синусоиды, сдвинутые одна относительно другой на 90°, можно изобразить векторами, расположенными под углом 90° (рисунок 4).

Так как ЭДС самоиндукции в цепях переменного тока непрерывно противодействует изменениям тока, то, чтобы дать возможность току протекать по виткам катушки, напряжение сети должно уравновешивать ЭДС самоиндукции. Иными словами, напряжение сети в каждый момент времени должно быть равно и противоположно ЭДС самоиндукции.

Вектор напряжения сети, равный и противоположный ЭДС самоиндукции eL, мы обозначим через U (рисунок 5). Только при условии, что к зажимам катушки будет приложено напряжение сети, равное и противоположное ЭДС самоиндукции, и, стало быть, это напряжение сети U уравновесит ЭДС самоиндукции eL, по катушке сможет проходить переменный ток I.

Но в этом случае напряжение сети U будет опережать по фазе ток I на 90°.

Читать еще:  Утепление цоколя фундамента снаружи: используемые технологии и материалы, этапы работ

Таким образом, в цепях переменного тока ЭДС самоиндукции, возникая непрерывно, вызывает сдвиг фаз между током и напряжением. Возвращаясь к рисунку 3, мы видим, что ток i по катушке будет проходить и тогда, когда напряжение сети (кривая uL) равно нулю (положение в), и даже тогда, когда напряжение сети направлено в сторону, обратную току (положение г и з).

Итак отметим, что в цепи переменного тока, когда ЭДС самоиндукции отсутствует, напряжение сети и ток совпадают по фазе. Индуктивная же нагрузка в цепях переменного тока (обмотки электродвигателей и генераторов, обмотки трансформаторов, индуктивные катушки) всегда вызывает сдвиг фаз между током и напряжением.

Можно показать, что скорость изменения тока пропорциональна угловой частоте ω. Следовательно, действующее значение ЭДС самоиндукции eL может быть найдено по формуле:

Как было отмечено выше, напряжение, приложенное к зажимам цепи, содержащей индуктивность, в каждый момент времени должно быть по величине равно ЭДС самоиндукции:

Формула закона Ома для цепи переменного тока, содержащего индуктивность, будет такова:

Величина xL называется индуктивным сопротивлением цепи, или реактивным сопротивлением индуктивности, и измеряется в омах. Таким образом, реактивное индуктивное сопротивление представляет собой своеобразное препятствие, которое оказывает цепь изменениям тока в ней. Оно равно произведению индуктивности на угловую частоту. Формула индуктивного сопротивления имеет вид:

Индуктивное сопротивление проводника зависит от частоты переменного тока и индуктивности проводника. Поэтому индуктивное сопротивление катушки, включаемой в цепь токов различной частоты, будет различным. Например, если имеется катушка индуктивностью 0,05 Гн, то путем расчета индуктивного сопротивления выяснится, что в цепи частотой 50 Гц ее индуктивное сопротивление будет:

а в цепи тока частотой 400 Гц

Та часть напряжения сети, которая идет на преодоление (уравновешивание) ЭДС самоиндукции, называется индуктивным падением напряжения или реактивной слагающей напряжения.

Рассмотрим теперь, какая мощность потребляется от источника переменного напряжения, если к его зажимам подключена индуктивность.

Рисунок 6. Кривые мгновенных значений напряжения, тока и мощности для цепи, содержащей индуктивность

На рисунке 6 даны кривые мгновенных значений напряжения, тока и мощности для этого случая. Мгновенное значение мощности равно произведению мгновенных значений напряжения и тока:

Из чертежа видно, что если u и i имеют одинаковые знаки, то кривая p положительная и располагается выше оси ωt. Если же u и i имеют разные знаки, то кривая p отрицательна и располагается ниже оси ωt.

В первую четверть периода ток, а в месте с ним и магнитный поток катушки увеличиваются. Катушка забирает из сети мощность. Площадь, заключенная между кривой p и осью ωt, есть работа (энергия) электрического тока. За первую четверть периода энергия, забираемая из сети, идет на создание магнитного поля вокруг витков катушки (мощность положительная). Количество энергии, запасаемое в магнитном поле за время роста тока, можно определить по формуле:

За вторую четверть периода ток убывает. ЭДС самоиндукции, которая в первую четверть периода стремилась помешать возрастанию тока, теперь, когда ток начинает уменьшаться, будет мешать ему уменьшаться. Сама катушка становится как бы генератором электрической энергии. Она возвращает в сеть энергию, запасенную в ее магнитном поле. Мощность отрицательна, и на рисунке 6 кривая p располагается ниже оси ωt.

За вторую половину периода явление повторяется. Таким образом, между источником переменного напряжения и катушкой, содержащей индуктивность, происходит обмен мощностью. В течение первой и третьей четвертей периода мощность поглощается катушкой, в течение второй и четвертой мощность возвращается источнику.

В этом случае, в среднем, расхода мощности не будет, несмотря на то, что на зажимах цепи есть напряжение U и в цепи протекает ток I.

Тот же результат мы получим, если вычислим среднюю или активную мощность по формуле, приведенной выше:

В нашем случае между напряжением и током существует сдвиг фаз, равный 90°, и cos φ = 90° = 0.

Поэтому активная мощность также равна нулю, то есть расхода мощности нет.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Индуктивность в цепи переменного тока

В цепи, содержащей индуктивность L (рис. 1), электронный ток обуславливается совместным действием напряжения и источника энергии и э. д. с. самоиндукции е, возникающей в цепи вследствие конфигураций тока:

I = (u + e) : r

u= (— е) + ir

Обратимся к простым условиям, когда r = 0. В данном случае :

u = —e = L (?i : ?t)

где ?i : ?t скорость конфигурации тока во времени.

Рис. 1 Кривые моментальных значений напряжения и тока в цепи, содержащей только индуктивность L

Разглядим, как должно изменяться во времени напряжение на зажимах индуктивности для того, чтоб через нее проходил синусоидальный переменный ток:

i = Im sin ?t

Для синусоидального тока величина ?i : ?t имеет определенный нрав конфигурации во времени. Она тоже синусоидальная, но по фазе опережает ток на четверть периода. Это может быть подтверждено последующим образом. В момент t сила тока:

i = Im sin ?t

а спустя очень малый просвет времени ?t сила тока будет:

I + ?i = i = Im sin ? (t + ?t)

поочередно, изменение силы тока:

?i = Im [sin ? (t + ?t)sin ?t]

sin (?t + ? ?t) = sin ?t cos ? ?t + cos ?t sin ? ?t

При этом косинус очень малого угла, каким является ? ?t, равен единице: cos ? ?t = 1, а синус очень малого угла равен соответственной дуге, как следует:

sin ? ?t = ? ?t

на основании этого:

?i = Im (sin ?t + ? ?t cos ?t – sin ?t) = Im ? ?t x cos ?t

Таким макаром, скорость конфигурации синусоидального тока:

?i : ?t = Im ? cos ?t

а пропорциональное ей напряжение на индуктивности:

u = L (?i : ?t) = Im ? cos ?t

Как следует, синусоидальный ток в индуктивности создается тоже синусоидальным напряжением, только это напряжение опережает ток по фазе на четверть периода, чему соответствует дуга: (? : 2) либо угол 90 о

Таким макаром, напряжение на зажимах индуктивности опережает по фазе ток либо, по другому, индуктивный ток является током, отстающим по фазе от напряжения.

В правой части уравнения от времени зависит только cos ?t, наибольшее значение которого cos ?t = 1. Как следует, наибольшее значение напряжения на индуктивности:

Подставим в эти формулы заместо наибольших значений их действующие значения:

U = I ?L либо I = (U : ?L)

Это и будет закон Ома для цепи (либо участка цепи) с одной индуктивностью.

Величина ?L имеет размерность сопротивления, потому что размерность ? = (1 : сек), а единица индуктивности гн = ом х сек. Величина ?L называется индуктивным сопротивлением и нередко сокращенно обозначается х либо xL = ?L

По существу, данная величина есть условное сопротивление, средством которого мы учитываем противодействие э. д. с. самоиндукции изменениям переменного тока, другими словами, реакцию (противодействие) индуктивности на повторяющиеся конфигурации синусоидального тока. Индуктивное сопротивление пропорционально частоте переменного тока, потому при неизменном токе оно равно нулю.

Многие аппараты и машины переменного тока нельзя включать под неизменное напряжение, потому что при переменном токе они владеют огромным индуктивным сопротивлением, а для неизменного тока их сопротивление относительно не достаточно и сила неизменного тока может быть для их разрушительной (к примеру, первичная обмотка трансформатора в радиоприемнике).

Индуктивность проводника

Этим термином называют коэффициент, определяющий пропорциональное отношение между суммарным магнитным потоком (Фс) и электрическим током (I) в определенном контуре. Индуктивность проводника (L) и отмеченные параметры соединены в следующей формуле: Фc = I * L. Данная публикация поможет разобраться с тематическими вычислениями и применением теоретических знаний для расчета катушек, других специальных изделий.

Обозначение и единицы измерения

Упомянутый выше суммарный магнитный поток (Фс) также называется «потокосцеплением». Этот параметр определяет свойство определенного проводника препятствовать изменениям проходящего через него электрического тока. С его помощью можно найти величину созданной электродвижущей силы (Е), определить мощность (W):

  • Е = -L* (dI/dt);
  • W = (L*I2)/2.

Из приведенных выражений видно, что индуктивность проводника зависит от силы тока, который за определенное значение времени способен образовать ЭДС в замкнутом контуре.

К сведению. Следует учитывать тот факт, что при рассмотрении высокочастотного диапазона влияние индуктивности значительно даже при работе с прямыми участками проводников.

В стандартной международной системе единиц «СИ» данный параметр указывают в генри (Гн). 1 Гн соответствует контуру, который формирует в контрольных точках разность потенциалов 1V. Сила тока в катушке за одну секунду изменяется на 1 А.

Теоретическое обоснование

Рассматриваемое явление основано на способности генерации магнитного поля проводником при пропускании через соответствующий контур электрического тока. Для облегчения расчетов возможны следующие допущения:

  • слабость (медленное изменение) электрических полей;
  • постоянная сила тока в каждой части контура;
  • отсутствие емкостных составляющих проводника.

Для элементарно малых областей эксперимента берут точечное распределение токов (магнитных полей). Суммирование расчетных параметров позволяет уточнить зависимость векторного представления индукции (B) от потока, пронизывающего поверхность S. Ее край формирует контур, по которому пропускают ток.

Чтобы не усложнять вычисления, рассматривают суммарный поток, проходящий через S, без учета сложности определенной поверхности. Он будет примерно равен току. Уточняющий коэффициент (L) помогает узнать действительное значение.

К сведению. На основе приведенных рассуждений можно сделать промежуточный вывод о минимальном значении формы контура (при работе с низкими и средними частотами).

Свойства индуктивности

Следующие особенности индуктивности (L) надо учитывать в ходе подготовки конструкторской документации:

  • L > 0;
  • L зависит от размеров рабочего контура;
  • на L оказывают влияние магнитные свойства окружающей среды.

Индуктивность одновиткового контура и индуктивность катушки

По приведенным выше формулам несложно сделать расчет базовых параметров для одного витка. Общее значение Фс (потокосцепление) равно сумме потоков через каждый из контуров, при одинаковых размерах рабочих элементов Ln = L1 * N2, где N – количество витков.

Важно! В реальных условиях структура магнитных полей значительно отличается в центральной части и на краях катушки.

Читать еще:  Способы утепления канализационных труб – как лучше утеплить, какие материалы использовать

Индуктивность соленоида

Этим термином называют катушку с длиной, намного большей, по сравнению с диаметром. Такое соотношение геометрических размеров формирует параллельные силовые линии в центре конструкции. Для этой части индукция определяется по формуле:

В = m * N*I, где m (магнитная постоянная) = 4*π*10-7 Гн.

Индуктивность определяют с помощью выражения:

где:

  • S – площадь поперечного сечения катушки;
  • l – длина конструкции.

При установке внутрь сердечника с ферромагнитными свойствами дополнительно применяют поправочный множитель (m1), который определяет влияние соответствующего материала.

Индуктивность тороидальной катушки (катушки с кольцевым сердечником)

Для расчета изделий такой формы допустимо применять стандартную формулу со следующими поправками:

где r – радиус до центральной оси тора.

Индуктивность длинного прямого проводника

Такую конструкцию рассчитывают по формуле:

где mc (mi) – относительные проницаемости среды (материала проводника), соответственно.

При отсутствии внешних помех коэффициент mc берут равным единице.

Таблица индуктивностей

Катушка индуктивности в цепи переменного тока проявляет себя различным образом. По мере увеличения частоты большее влияние начинает оказывать так называемый «скин» эффект. Его вызывают поверхностные токи. Для коррекции распределения полей применяют поправочные множители. В некоторых ситуациях приходится дополнительно учитывать воздействие вихревых составляющих.

Датчики

Изменение напряжения на катушке индуктивности используют для контроля параметров окружающей среды. Такие датчики чутко реагируют на приближение изделий с ферромагнитными свойствами. Их применяют для бесконтактной фиксации положения отдельных частей механизмов, створок ворот и других изделий.

В соответствующем исполнении они хорошо противостоят неблагоприятным внешним воздействиям. Потенциальных потребителей привлекают простота, разумная стоимость, долговечность. Функциональный датчик несложно сделать собственными руками при необходимости. Такие приборы без проблем совмещаются с другими компонентами систем автоматизации.

Катушки индуктивности

Изделия этого типа используют для создания:

  • понижающих и повышающих трансформаторов;
  • колебательных контуров;
  • электромагнитных приводов;
  • нагревательных элементов;
  • приемных антенн.

К сведению. Катушку какой индуктивности надо включить для решения определенной задачи, вычисляют с помощью рассмотренных выше формул.

Взаимоиндукция

Так называют процесс возникновения электродвижущей силы в другом контуре при пропускании тока через первый.

Методы снижения нежелательной индуктивности

Для уменьшения негативных влияний применяют намотку катушек двойным проводом с последующим встречным соединением. Противоположное направление движения тока компенсируют паразитные поля. В линиях питания устанавливают компенсирующие реактивные нагрузки.

Видео

Индуктивность/катушка в цепи переменного тока — работа и влияние на цепь

При течении тока по проводнику всегда вокруг движущихся зарядов возникает магнитное поле. Для случая, когда в цепи имеется место с несколькими витками, вокруг них возникающее магнитное поле пронизывает собственный проводник, действуя как дополнительная ЭДС помимо основного источника питания. Под действием этой ЭДС в проводнике возникает ток самоиндукции, который в случае сети переменного напряжения также носит знакопеременный характер.

В соответствии с правилом Ленца, сила самоиндукции во всех случаях противодействует сите, вызвавшей её.

Поскольку ЭДС самоиндукции согласно данному условию противодействует изменениям в цепи, то в сети переменного тока этот фактор учитывается и обозначается как индуктивное сопротивление (ХL), измеряющееся аналогично активному сопротивлению в Омах.

Величина индуктивного сопротивления определяется величиной ЭДС самоиндукции, которая в свою очередь зависит от индуктивности катушки и частоты изменения напряжения в катушке.

где L — это индуктивность катушки, измеряется в Генриях (Гн);

ω — угловая частота переменного тока (рад/сек).

Другими словами, индуктивное сопротивление тем больше, чем выше частота протекающего переменного тока и чем большее количество витков имеется в катушке.

Катушки индуктивности в цепях переменного тока создают ток самоиндукции, который по фазе опережает напряжение в цепи на угол 90°. При этом в разные периоды изменения базового напряжения в катушке сначала происходит накопление энергии (при возрастании напряжения в любую сторону), а затем отдача её обратно в сеть (во время уменьшения напряжения в сторону нуля).

Таким образом, если пренебречь собственным активным сопротивлением проводника катушки, в среднем она не потребляет электроэнергию, а лишь изменяет характеристики и характер проходящего тока в цепи во времени.

То есть, вся запасённая в катушке в первый период энергия затем отдаётся обратно в электрическую сеть.

Это свойство позволило широко использовать катушки индуктивности в электротехнике для множества целей:

— в качестве основного накапливающего элемента в стабилизаторах, что позволяет преобразовывать уровни напряжения;

— несколько связанных между собой индуктивно катушек образуют трансформатор;

— в качестве электромагнитов;

— в радиосвязи для приёма и излучения электромагнитных волн (кольцевая антенна, магнитная антенна);

— для обнаружения магнитных полей;

— для нагрева проводящих ток материалов в печах индукционного типа и многое др.

При выборе подходящей для тех или иных целей катушки (индуктивности) необходимо учитывать частоту в сети, собственные характеристики катушки (резонансная частота, индуктивность, допустимый ток, накапливаемая мощность и т.д.).

Конденсатор в цепи переменного тока

При изучении постоянного тока мы узнали, что он не может проходить в цепи, в которой есть конденсатор. Так как конденсатор — это две пластины, разделенные слоем диэлектрика. Для цепи постоянного тока конденсатор будет, как разрыв в цепи. Если конденсатор пропускает постоянный ток, значит, он неисправен.

Рассмотрим, как будет меняться сила тока в цепи, содержащей конденсатор, с течением времени. При этом будем пренебрегать сопротивлением соединяющих проводов и обкладок конденсатора.

Напряжение на конденсаторе будет равняться напряжению на концах цепи. Значит, мы можем приравнять эти две величины.

Видим, что заряд будет изменяться по гармоническому закону. Сила тока — это скорость изменения заряда. Значит, если возьмем производную от заряда, получим выражение для силы тока.

I = q’ = UmC ω cos( ω t+ π /2).

Разность фаз между колебаниями силы тока и заряда, а также напряжения, получилась равной π /2. Получается, что колебания силы тока опережают по фазе колебания напряжения на π /2. Это представлено на рисунке.

Из уравнения колебаний силы тока получаем выражение для амплитуды силы тока:

Введем следующее обозначение:

Запишем следующее выражение закона Ома, используя Xc и действующие значения силы тока и напряжения:

Xc — величина, называемая емкостным сопротивлением.

Катушка индуктивности в цепи переменного тока

Индуктивность в цепи переменного тока будет влиять на силу переменного тока.

Рассмотрим цепь, в которой есть только катушка индуктивности. При этом значение сопротивления катушки и соединительных проводов пренебрежимо мало.

Выясним, как будут связаны напряжение на катушке с ЭДС самоиндукции в ней. При сопротивлении катушки равном нулю, напряженность электрического поля внутри проводника тоже будет равна нулю. Равенство нулю напряженности возможно.

Напряженности электрического поля создаваемого зарядами Eк будет соответствовать такая же по модулю и противоположно направленная напряженность вихревого электрического поля, которое появится вследствие изменения магнитного поля.

Следовательно, ЭДС самоиндукции ei будет равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Следовательно: ei = -u.

Сила тока будет изменяться по гармоническому закону: I = Im sin(ωt).

ЭДС самоиндукции будет равна: Ei = -Li’ = -L ω Im cos( ω t).

Следовательно, напряжение будет равно: U = L ω Im cos( ω t) = L ω Im sin( ω t+ π /2).

Im = Um /(ωL). Введем обозначение XL = ωL. Эта величина называется индуктивное сопротивление.

§51. Индуктивность в цепи переменного тока

Ток, напряжение и э. д. с. самоиндукции. При включении в цепь пременного тока индуктивности (катушки индуктивности, потерями в которой можно пренебречь) (рис. 178, а) изменяющийся ток непрерывно индуцирует в ней э. д. с. самоиндукции

eL = -L ?i / ?t (68)

где ?i/?t— скорость изменения тока.

Рассматривая график изменения силы тока i (рис. 178,б), можно установить, что скорость его изменения ?i/?t будет наибольшей в моменты времени, когда угол ? равен 0; 180 и 360°. Следовательно, в эти минуты времени э. д. с. имеет наибольшее значение. В моменты времени, когда угол ?t равен 90° и 270°, скорость изменения тока ?i/?t = 0 и поэтому э. д. с. eL = 0.

Э. д. с. самоиндукции е согласно правилу Ленца направлена так, чтобы препятствовать изменению тока. Поэтому в первую четверть периода, когда ток i увеличивается, э. д. с. eL имеет отрицательное значение (направлена против тока); во вторую четверть периода, когда ток i уменьшается, э. д. с. eL имеет положительное значение (совпадает по направлению с током). В третью четверть периода ток i изменяет свое направление и увеличивается, поэтому э. д. с. самоиндукции eL направлена против тока и имеет положительное значение. В четвертую четверть периода ток i уменьшается и э. д. с. самоиндукции eL стремится поддержать прежнее направление тока, т. е. имеет отрицательное значение. Таким образом, э. д. с. самоиндукции eL отстает по фазе от тока i на угол 90°.

Так как в цепи, куда включена индуктивность L, отсутствует активное сопротивление (рассматривается идеальная катушка индуктивности), то по второму закону Кирхгофа u+eL=0, т. е. u = -eL Следовательно, напряжение источника всегда равно по величине и противоположно по направлению э. д. с. самоиндукции.

Из рассмотрения кривых (см. рис. 178,б) видно, что кривая напряжения и сдвинута относительно кривой силы тока i на четверть периода, т. е. на угол 90°. При этом напряжение достигает наибольших и нулевых значений раньше, чем ток. Следовательно,

Рис. 178. Схема включения в цепь переменного тока индуктивности (а), кривые тока I, напряжения и, э.д.с. eL (б) и векторная диаграмма (в)

при включении в цепь переменного тока индуктивности ток i отстает по фазе от напряжения и на угол 90° или, что то же самое, напряжение и опережает ток по фазе на угол 90° (рис. 178, в).

Индуктивное сопротивление. Сопротивление катушки или проводника переменному току, вызванное действием э. д. с. самоиндукции, называется индуктивным сопротивлением. Оно обозначается XL и измеряется в омах. Физическая природа индуктивного сопротивления совершенно другая, чем активного. Э. д. с. самоиндукции eL направлена против приложенного напряжения u, которое заставляет изменяться ток; согласно закону Ленца она препятствует изменению тока i, т. е. оказывает прохождению переменного тока определенное сопротивление.

Чем большая э. д. с. самоиндукции eL индуцируется в проводнике (катушке), тем большее они имеют индуктивное сопротивление XL. Э. д. с. самоиндукции согласно формуле (68) прямо пропорциональна индуктивности L и скорости изменения тока ?i/?t, т. е. частоте его изменения f (значению ?). Поэтому индуктивное сопротивление

Следовательно, индуктивное сопротивление не зависит от материала, из которого изготовлен проводник (катушка), и от площади поперечного сечения проводника.

Закон Ома для цепи с индуктивностью

Электрическая мощность. Рассмотрим, как изменяется электрическая мощность в цепи переменного тока с индуктивностью. Мгновенное значение мощности р, равное произведению мгновенных значений силы тока i и напряжения и, можно получить графическим путем, перемножая ординаты кривых тока и напряжения при различных углах ?t. Кривая мгновенной мощности р (рис. 179, а) представляет собой синусоиду, которая изменяется с двойной частотой 2? по сравнению с частотой изменения тока i и напряжения и.

Читать еще:  Какая труба лучше для водоснабжения? Виды труб водоснабжения

При рассмотрении этой кривой видно, что мощность р может иметь положительные и отрицательные значения. В течение первой четверти периода ток и напряжение положительны и мощность p = ui также положительна. Во второй четверти периода ток положителен, а напряжение отрицательно; следовательно, мощность р будет отрицательна. В течение третьей четверти периода мощность снова становится положительной, а в течение четвертой четверти — отрицательной.

Понятие положительной и отрицательной электрической мощности физически определяет направление потока энергии. Положительный знак мощности означает, что электрическая энергия W передается от источника к приемнику; отрицательный знак мощности означает, что электрическая энергия W переходит от приемника к источнику. Следовательно, при включении в цепь переменного тока индуктивности возникает непрерывный колебательный процесс обмена энергией между источником и индуктивностью, при котором не создается никакой работы. В первую и третью четверти периода мощность положительна, т. е. индуктивность получает энергию W от источника (см. стрелки W) и накапливает ее в своем магнитном поле. Во вторую и четвертую четверти периода индуктивность отдает накопленную энергию W источнику. При этом протекание по цепи тока поддерживается благодаря действию э.д. с. самоиндукции eL.

Таким образом, в целом за период в индуктивное сопротивление не поступает электрическая энергия (на это указывает то, что среднее значение мощности за период равно нулю). Для того чтобы подчеркнуть указанную особенность индуктивного сопротивления, его относят к группе реактивных сопротивлений, т. е. сопротивлений, которые в цепи переменного тока в целом за период не потребляют электрической энергии. Следует отметить, что в реальные катушки индуктивности поступает некоторая энергия от источника переменного тока из-за наличия активного сопротивления проводов, из которых выполнены эти катушки. Эта энергия превращается в тепло.

Рис. 179. Кривые тока i, напряжения u и мощности р при включении в цепь переменного тока катушки индуктивности (а) и конденсатора (б)

Рис. 180. Последовательное (а) и параллельное (б) соединения катушек индуктивности

Так как среднее значение мощности в цепи с индуктивностью равно нулю, для характеристики процесса обмена энергией между источником и индуктивностью введено понятие реактивной мощности индуктивности:

где UL — напряжение, приложенное к индуктивности L (действующее значение).

Реактивная мощность измеряется в варах (вар) и киловарах (квар). Наименование единицы происходит от первых букв слов вольт-амперреактивный. Реактивную мощность можно выразить также в виде

QL = U 2 L/XL или QL = I 2 XL

Способы соединения катушек индуктивности. В цепях переменного тока приходится соединять катушки индуктивности последовательно и параллельно.
При последовательном соединении катушек индуктивности эквивалентная индуктивность Lэк равна сумме индуктивностей; например, при трех катушках с индуктивностями L1, L2 и L3 (рис. 180, а)

В этом случае эквивалентное индуктивное сопротивление

При параллельном соединении катушек индуктивности (рис. 180,б) для эквивалентной индуктивности имеем:

для эквивалентного индуктивного сопротивления

Катушка индуктивности в цепи переменного тока

Если катушка индуктивности включена в цепь переменного тока, то в такой цепи, фаза тока всегда отстает от фазы напряжения. Разберем причины этого отставания на простейшем примере, когда в цепи имеется только индуктивное сопротивление, а омического сопротивления нет вовсе, или вернее омическим сопротивлением провода катушки самоиндукции можно пренебречь, так как оно мало.

Для удобства рассмотрения явлений будем считать, что мы присоединяем катушку индуктивности к источнику переменного тока в тот момент, когда напряжение U на его зажимах имеет максимальное амплитудное значение (рис. 1а.). Этот момент будем считать началом периода.

Рисунок 1. Самоиндукция-инерция. а) соотношения фаз тока, напряжения и ЭДС самоиндукции при включение катушки индуктивности в цепь переменного тока; б) соотношение фаз скорости движения, внешней силы и силы инерции

В момент включения катушки в ней немедленно возникнет электрический ток. Но ток не может сразу достичь своего амплитудного значения потому, что при его возникновении вокруг катушки начнет появляться магнитное поле, которое будет наводить в катушке ЭДС самоиндукции, направленную против внешнего напряжения, т. е. напряжения источника переменного тока. Электродвижущая сила самоиндукции будет препятствовать быстрому нарастанию силы тока в катушке. Поэтому нарастание тока будет длиться целую четверть периода.

По мере приближения к концу первой четверти периода скорость нарастания тока в катушке постепенно уменьшается.

Но вместе с тем ослабевает и ЭДС самоиндукции, так как величина ее зависит от скорости изменения силы тока.

Итак, в конце первой четверти периода внешнее напряжение, приложенное к катушке, будет равно нулю, ЭДС самоиндукции также будет, равна нулю, а ток в катушке и магнитный поток вокруг нее будут иметь максимальные амплитудные значения. В магнитном поле катушки будет запасено некоторое количество энергии, полученной от источника тока.

С началом второй четверти периода внешнее напряжение, переменив свое направление, будет возрастать, вследствие чего ток в катушке, текущий все еще в прежнем направлении, начнет уменьшаться. Но теперь в катушке снова возникнет ЭДС самоиндукции, обусловленная уменьшением магнитного потока, которая будет поддерживать ток в прежнем направлении.

В течение всей второй четверти периода внешнее напряже¬ние будет увеличиваться, а сила тока — уменьшаться. Ско¬рость уменьшения силы тока, оставаясь небольшой в начале второй четверти, станет постепенно нарастать и в конце этой четверти достигнет наибольшей величины.

Итак, к концу второй четверти периода внешнее напряжение приближается к амплитудному значению, а сила тока и магнитный ноток приближаются к нулю, убывая все с большей скоростью, вследствие чего ЭДС самоиндукции достигает своего амплитудного значения. Направление ЭДС самоиндукции, как всегда, остается противоположным направлению внешнего напряжения. Энергия, запасенная в магнитном поле за первую четверть периода, теперь возвращается обратно в цепь.

В течение второй половины (третья и четвертая четверти) периода все явления будут происходить в том же порядке, с той лишь разницей, что направления тока, внешнего напряжения и ЭДС самоиндукции изменяются на противоположные (рис. 1а.).

Таким образом, фаза тока все время отстает от фазы напряжения, причем нетрудно заметить, что сдвиг фаз тока и напряжения равен 90°.

Представим себе, что мы толкаем вдоль по рельсам груженую вагонетку. В первый момент, когда вагонетка только начинает трогаться с места, мы прилагаем к ней максимум усилий, которые по мере увеличения скорости вагонетки будем постепенно уменьшать. При этом мы почувствуем, что вагонетка, обладая инерцией, как бы сопротивляется нашим усилиям. Это противодействие (реакция) вагонетки будет особенно сильным вначале, по мере же ослабления наших усилий будет ослабевать и противодействие вагонетки, она постепенно будет переставать «упрямиться» и покорно покатится по рельсам.

Затем мы вовсе перестанем толкать вагонетку и даже, наоборот, начнем понемногу тянуть ее в обратном направлении. При этом мы почувствуем, что вагонетка снова сопротивляется нашим усилиям. Если мы будем все сильнее и сильнее тянуть вагонетку назад, то и ее противодействие будет соответственно все более и более возрастать. Наконец, нам удастся остановить вагонетку и даже изменить направление ее движения. Когда вагонетка покатится обратно, мы будем постепенно ослаблять наши усилия, т. е. будем тянуть ее все слабее и слабее, однако, несмотря на это, скорость вагонетки будет все-таки увеличиваться (при слабом трении в подшипниках).

Когда вагонетка пройдет половину пути в обратном направлении, мы совсем перестанем тянуть ее и снова переменим направление наших усилий, т. е. начнем ее снова задерживать, постепенно увеличивая силу торможения до тех пор, пока вагонетка не остановится, заняв первоначальное (исходное) положение. После этого мы можем продолжать все наши действия сначала.

В этом примере наши усилия, прилагаемые к вагонетке, соответствуют внешней ЭДС, противодействие вагонетки, обусловленное ее инерцией, — ЭДС самоиндукции, а скорость вагонетки — электрическому току. Если изобразить графически изменение наших усилий, а также изменение противодействия вагонетки и ее скорости с течением времени, то мы получим графики (рис. 1б), в точности соответствующие графикам рис.1а.

Из этого примера становится более понятной сущность реактивного (безваттного) сопротивления. В самом деле, в течение первой четверти периода мы толкали вагонетку, а она противодействовала нашим усилиям; в течение второй четверти периода она катилась сама, а мы «упирались»; в течение третьей четверти периода мы опять тянули ее, а вагонетка снова оказывала противодействие нашим усилиям и, наконец, в течение четвертой четверти периода она снова катилась сама, а мы ее тормозили.

Короче говоря, в течение первой и третьей четверти периода мы работали «на вагонетку», а в течение второй и четвертой четвертей она работала «на нас», возвращая обратно полученную то нас энергию. В результате наша работа оказалась «безваттной».

Таким образом катушка индуктивности в цепи переменного тока может работать как безваттный резистор.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Индуктивность в цепи переменного тока

Переменный ток с индуктивностью

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока (рис. 57, а), в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю.
Под действием э. д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции

где L — индуктивность катушки;
— скорость изменения тока в ней.
Электродвижущая сила самоиндукции, согласно правилу Ленца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э. д. с. генератора, то она препятствует прохождению переменного тока. При расчетах это учитывается по индуктивному сопротивлению, которое обозначается XL и измеряется в омах.

Таким образом, индуктивное сопротивление катушки XL, зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э. д. с. самоиндукции, зависит от скорости изменения тока в катушке (от частоты ω) и от индуктивности катушки L

XL = ωL, (58)

где XL — индуктивное сопротивление, ом;
ω — угловая частота переменного тока, рад/сек;
L — индуктивность катушки, гн.
Так как угловая частота переменного тока ω = 2πf, то индуктивное сопротивление

XL = 2πf L, (59)

где f — частота переменного тока, гц.

Дата добавления: 2015-06-27 ; Просмотров: 641 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×