8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Особенности синусоидального тока

Основные характеристики синусоидального тока

Наибольшее распространение в электроэнергетике получили электрические цепи синусоидального тока. По сравнению с постоянным током синусоидальный ток имеет ряд преимуществ: производство, передача, распределение и использование электрической энергии наиболее экономичны при синусоидальном токе [1]. В цепях синусоидального тока, в отличие от постоянного, можно относительно просто, с помощью специальных электрических машин –трансформаторов преобразовывать напряжения разной величины при сохранении частоты и синусоидальной формы напряжений и токов. Кроме этого, коэффициент полезного действия генераторов, электродвигателей и трансформаторов при синусоидальной форме тока оказывается наиболее высоким.

В силу своих преимуществ, цепи переменного тока используются в электроснабжении и в различных электротехнических устройствах в промышленности, на транспорте, в строительстве, в жилищно-комммунальном хозяйстве и др.

В линейных цепях синусоидального тока напряжение u, электродвижущая сила (ЭДС)e и токi являются синусоидальными функциями времени:

u = Umsin(wt + yu); (1.1а)

где u, e, i– соответственно, мгновенные значениянапряжения, ЭДС и тока, то есть значения этих величин в рассматриваемый момент текущего времени t = t1;

wt + yu , wt + ye , wt + yiаргументы синусоидальных функций, называемые фазой или фазовым углом.

Фаза пропорциональна текущему времени и отсчитывается по оси абсцисс в радианах или градусах от точки перехода синусоидальный функции через ноль до значения аргумента в рассматриваемый момент времени.

Графики мгновенных значений синусоидальных тока iи напряжения u показаны на рис. 1.3.

Как следует из формул, каждая синусоидальная функция времени в электрических цепях переменного тока однозначно определяется тремя параметрами: амплитудойUm, Em, Im(максимальное значение синусоидальной функции), угловой частотойw, рад/сек (скорость изменения аргумента синусоидальной функции); начальной фазойyu, ye, yi(значение аргумента синусоидальной функции в момент начала отсчета времени, то есть при t= 0), измеряемой в радианах или градусах.

Рис. 1.3. Графики мгновенных значений синусоидальных величин тока i и напряжения u и их действующие значения I и U

Кроме того, для характеристики синусоидальных функций времени используют следующие величины:

· ПериодТ= 2p/w, сек – наименьший интервал времени, по истечении которого мгновенные значения периодической величины повторяются.

· Частотаf = 1/T, то есть число колебаний (периодов) в секунду, Единица частоты – герц (Гц). 1 Гц = 1 сек -1 . Промышленная частота всех энергетических систем в России и других развитых стран за исключением США, Канады и Японии (где f = 60 Гц) равна 50 Гц, то есть 50 периодов в секунду. Длительность одного периода при частоте 50 Гц составляет 1/50 = 0,02 сек = 20 мсек.

· Сдвиг фаз между напряжением и токомj–алгебраическая величина, определяемая разностью начальных фаз напряжения и тока j = yi – yu, ,рад (см. рис. 1.3);

· Действующее значениенапряжения U, ЭДС E и тока I– среднеквадратичное значение соответствующих синусоидальных величин u, e, iза период Т.

Так, действующее значение синусоидального напряжения:

(1.2)

То есть действующее значение синусоидального напряжения U в раз меньше амплитуды этого напряжения Um.

Поэтому, если действующее значение напряжения равно 220 В, имея частоту 50 Гц, то амплитудное значение этого напряжения достигает дважды за период или 100 раз в секунду величины Um ≈ 1,41U = 1,41∙220 = 310 B.

Аналогично определяются действующие значения синусоидальных ЭДС Е и тока I:

; (1.3а)

. (1.3б)

С физической точки зрения действующее значение синусоидального тока равно такому значению постоянного тока, который за время равное одному периоду выделяет в том же резисторе такое же количество тепла, как и синусоидальный ток.

Следует знать, что в паспорте электротехнических устройств синусоидального тока указаны действующие значения напряжений и токов, и что большинство приборов, применяемых для измерения переменных напряжений и токов, градуированы в действующих значениях.

· Среднее значениеUср, Еср. Iср– среднее значение синусоидальной функции напряжения, ЭДС или тока, определяемое за полупериод положительных мгновенных значений этой функции. Так, среднее значение напряжения:

.

Аналогично определяются средние значения синусоидальных ЭДС и тока:

.

.

Средними значениями синусоидальных величин оперируют в выпрямительных системах (при выпрямлении синусоидальных токов и напряжений).

Основные параметры переменного тока

Переменный ток — электрический ток, направление и сила которого изменяются периодически. Так как обычно сила переменного тока изменяется по синусоидальному закону, то переменный ток представляет собой синусоидальные колебания напряжения и силы тока.

Поэтому к переменному току применимо все то, что относится к синусоидальным электрическим колебаниям. Синусоидальные колебания — колебания, при которых колеблющаяся величина изменяется по закону синуса. В данной статье поговорим о параметрах переменного тока.

Изменение ЭДС и изменение тока линейной нагрузки, подключенной к такому источнику, будет происходить по синусоидальному закону. При этом переменные ЭДС, переменные напряжения и токи, можно характеризовать основными четырьмя их параметрами:

Есть и вспомогательные параметры:

Далее рассмотрим все эти параметры по отдельности и во взаимосвязи.

Период — время, в течение которого система, совершающая колебания, проходит через все промежуточные состояния и нале снова возвращается к исходному.

Периодом Т переменного тока называется промежуток времени, за который ток или напряжение совершает один полный цикл изменений.

Поскольку источником переменного тока является генератор, то период связан со скоростью вращения его ротора, и чем выше скорость вращения витка или ротора генератора, тем меньшим оказывается период генерируемой переменной ЭДС, и, соответственно, переменного тока нагрузки.

Период измеряется в секундах, миллисекундах, микросекундах, наносекундах, в зависимости от конкретной ситуации, в которой данный ток рассматривается. На вышеприведенном рисунке видно, как напряжение U с течением времени изменяется, имея при этом постоянный характерный период Т.

Частота f является величиной обратной периоду, и численно равна количеству периодов изменения тока или ЭДС за 1 секунду. То есть f = 1/Т. Единица измерения частоты — герц (Гц), названная в честь немецкого физика Генриха Герца, внесшего в 19 веке немалый вклад в развитие электродинамики. Чем меньше период, тем выше частота изменения ЭДС или тока.

Сегодня в России стандартной частотой переменного тока в электрических сетях является 50 Гц, то есть за 1 секунду происходит 50 колебаний сетевого напряжения.

В других областях электродинамики используются и более высокие частоты, например 20 кГц и более — в современных инверторах, и до единиц МГц в более узких сферах электродинамики. На приведенном выше рисунке видно, что за одну секунду происходит 50 полных колебаний, каждое из которых длится 0,02 секунды, и 1/0,02 = 50.

По графикам изменения синусоидального переменного тока с течением времени видно, что токи различной частоты содержат разное количество периодов на одном и том же отрезке времени.

Угловая частота — число колебаний, совершаемых за 2пи сек.

За один период фаза синусоидальной ЭДС или синусоидального тока изменяется на 2пи радиан или на 360°, поэтому угловая частота переменного синусоидального тока равна:

Пользоваться числом колебаний на 2пи сек. (а не за 1 сек.) удобно потому, что в формулах, выражающих закон изменения напряжений и токов при гармонических колебаниях, выражающих индуктивное или емкостное сопротивление переменному току, и во многих других случаях частота колебаний n фигурируют вместе с множителем 2пи.

Фаза — состояние, стадия периодическою процесса. Более определенный смысл имеет понятие фаза в случае синусоидальных колебаний. На практике обычно играет роль не фаза сама по себе, а сдвиг фаз между какими-либо двумя периодическими процессами.

В данном случае под термином «фаза» понимают стадию развития процесса, и в данном случае, применительно к переменным токам и напряжениям синусоидальной формы, фазой называют состояние переменного тока в определенный момент времени.

На рисунках можно видеть: совпадение напряжения U1 и тока I1 по фазе, напряжения U1 и U2 в противофазе, а также сдвиг по фазе между током I1 и напряжением U2. Сдвиг по фазе измеряется в радианах, долях периода, в градусах.

Амплитуда Uм и Iм

Читать еще:  Как произвести монтаж панелей пвх на потолок, порядок работ

Говоря о величине синусоидального переменного тока или синусоидальной переменной ЭДС, наибольшее значение ЭДС или тока называют амплитудой или амплитудным (максимальным) значением.

Амплитуда — наибольшее значение величины, совершающей гармонические колебания (например, максимальное значение силы тока в переменном токе, отклонение колеблющегося маятника от положения равновесия), наибольшее отклонение колеблющейся величины от некоторого значения, условно принятого за начальное нулевое.

Строго говоря, термин амплитуда относится только к синусоидальным колебаниям, но его обычно (не вполне правильно) применяют в указанном выше смысле ко всяким колебаниям.

Если речь о генераторе переменного тока, то ЭДС на его выводах дважды за период достигает амплитудного значения, первое из которых +Eм, второе -Eм, соответственно во время положительного и отрицательного полупериодов. Аналогичным образом ведет себя и ток I, и обозначается соответственно Iм.

Гармонические колебания — колебания, в которых колеблющаяся величина, например напряжение в электрической цепи, меняется во времени по гармоническому синусоидальному или косинусоидальному закону.

Гармоника — гармоническое колебание, частота которого в целое число раз больше частоты некоторого другого колебания, называемого основным тоном. Номер гармоники указывает, во сколько именно раз частота ее больше частоты основного тона (например, третья гармоника — гармоническое колебание с частотой, втрое большей, чем частота основного тона).

Всякое периодическое, но не гармоническое (т. е. отличающееся по форме от синусоидального) колебание может быть представлено в виде суммы гармонических колебаний — основного тона и ряда гармоник. Чем больше рассматриваемое колебание отличается по форме от синусоидального, тем большее число гармоник оно содержит.

Мгновенное значение u и i

Значение ЭДС или тока в конкретный текущий момент времени называется мгновенным значением, они обозначаются маленькими буквами u и i. Но поскольку эти значения все время меняются, то судить о переменных токах и ЭДС по ним неудобно.

Действующие значения I, E и U

Способность переменного тока к совершению какой-нибудь полезной работы, например механически вращать ротор двигателя или производить тепло на нагревательном приборе, удобно оценивать по действующим значениям ЭДС и токов.

Так, действующим значением тока называется значение такого постоянного тока, который при прохождении по проводнику в течение одного периода рассматриваемого переменного тока, производит такую же механическую работу или такое же количество теплоты, что и данный переменный ток.

Действующие значения напряжений, ЭДС и токов обозначают заглавными буквами I, E и U. Для синусоидального переменного тока и для синусоидального переменного напряжения действующие значения равны:

Действующее значение тока и напряжения удобно практически использовать для описания электрических сетей. Например значение в 220-240 вольт — это действующее значение напряжения в современных бытовых розетках, а амплитуда гораздо выше — от 311 до 339 вольт.

Так же и с током, например когда говорят, что по бытовому нагревательному прибору протекает ток в 8 ампер, это значит действующее значение, в то время как амплитуда составляет 11,3 ампер.

Так или иначе, механическая работа и электрическая энергия в электроустановках пропорциональны действующим значениям напряжений и токов. Значительная часть измерительных приборов показывает именно действующие значения напряжений и токов.

Совокупные знания

На рисунке приведена развёрнутая диаграмма переменного тока, изменяющегося с течением времени по величине и направлению. Если кривая изменения периодического тока описывается синусоидой, то ток называют синусоидальным.

Хотя переменный ток часто переводят на английский как «alternating current», эти термины не являются эквивалентными. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной. На горизонтальной оси отложены в определённом масштабе отрезки времени, а по вертикальной оси — величины тока, вверх — от начальной точки — положительные, вниз — отрицательные.

Переменный ток высокого напряжения передаётся потребителям по линиям электропередач (ЛЭП). Повышение напряжения необходимо для того, чтобы уменьшить потери в проводах ЛЭП(см. Закон Джоуля — Ленца, при увеличении электрического напряжения уменьшается сила тока в электрической цепи, соответственно уменьшаются тепловые потери). На другом конце линии электропередачи находится понижающая трансформаторная подстанция, где высоковольтный переменный ток понижается трансформаторами до нужного потребителю значения.

Параметры переменного тока и напряжения

Теоретическая и практическая важность синусоидального гармонического тока обусловлена тем, что он имеет минимальную ширину спектра. После прохождения момента, когда рамка параллельна вектору магнитной индукции B, ток в ней начинает течь в обратную сторону.

Время, за которое ток в проводнике дважды изменяет своё направление, называют периодом T. Период измеряется в секундах. Циклической частотой f называется величина обратная периоду . Измеряется в Герцах, в домашней розетке циклическая частота тока равна 50 Гц, её также называют промышленной частотой. В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка. Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.

ПериодT — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения. Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах.

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени. Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод. Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов.

Переменный (синусоидальный) ток и основные характеризующие его величины.

Переменный ток долгое время не находил практического применения. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения.

Мгновенное значение переменной величины есть функция времени. Аналогично определяются действующие значения ЭДС и напряжения. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Аналогичный результат можно получить для синусоидальных ЭДС и напряжений. Переменный ток получают на электростанциях, преобразуя с помощью генераторов механическую энергию в электрическую.

В генераторах переменного тока получают ЭДС, изменяющуюся во времени по закону синуса, и тем самым обеспечивают наиболее выгодный эксплуатационный режим работы электрических установок. При расчете и анализе электрических цепей применяют несколько способов представления синусоидальных электрических величин.

2.5. Сопротивления в цепи переменного тока

Эта ЭДС всегда препятствует изменению тока (закон Ленца). Уравнение (2.21) показывает, что фаза тока в индуктивности отстает от фазы напряжения на 90°. Величину XL = ωL в уравнении (2.20) называют индуктивным сопротивлением. Реактивное. В разделе реактивные выделяют три вида сопротивлений: индуктивное xL и емкостное хс и собственно реактивное. Для индуктивного сопротивления выше была получена формула XL = ωL. Единицей измерения индуктивного сопротивления также является Ом. Величина xL линейно зависит от частоты.

Из уравнения (2.32) видно, что мгновенная мощность всегда больше нуля и изменяется во времени. По форме уравнение (2.34) совпадает с мощностью на постоянном токе. Величину Р равную произведению действующих значений тока и напряжения называют активной мощностью.

В электрических цепях переменного тока наиболее часто используют синусоидальную форму, характеризующуюся тем, что все токи и напряжения являются синусоидальными функциями времени. Переменный ток — это ток, который периодически изменяется как по модулю, так и по направлению. Появляется переменный ток благодаря электромагнитной индукции. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов.

Читать еще:  Устройство системы антиобледенения кровли и водостоков при помощи саморегулирующегося греющего кабеля

Переменный синусоидальный ток

Переменный ток — это ток, который периодически изменяется как по модулю, так и по направлению. Появляется переменный ток благодаря электромагнитной индукции . Электромагнитная индукция это явление возникновения тока в замкнутом контуре при изменении магнитного потока проходящего через него. Чтобы понять, как именно возникает ток, представим себе рамку (кусочек проволоки прямоугольной формы), которая находится под воздействием магнитного поля B .

Пока рамка находится в покое, тока в ней нет. Но как только мы начнём её поворачивать, электроны, которые находятся в рамке, начнут перемещаться вместе с ней, то есть двигаться в магнитном поле. Вследствие этого магнитное поле начинает действовать на электроны, заставляя их двигаться по рамке. Чем больше линий магнитного поля пронизывает рамку, тем сила действующая на электроны больше, следовательно, и электрический ток тоже. Получается, что ток достигает максимума в момент, когда рамка перпендикулярна магнитному полю (наибольшее количество линии пронизывает рамку) и равен нулю, когда параллельна (наименьшее количество линии пронизывает рамку). Соответственно и сила, которая действует на электроны, тоже изменяется. После прохождения момента, когда рамка параллельна вектору магнитной индукции B, ток в ней начинает течь в обратную сторону.

Ток, который получается при вращении рамки, изменяясь во времени, описывает синусоиду, то есть является синусоидальным. Переменный синусоидальный ток является частным случаем периодического переменного тока. Закон, описывающий изменение тока, имеет вид:

Амплитуда Im – это наибольшая абсолютная величина, которую принимает периодически изменяющийся ток.

Начальная фаза ψ — аргумент синусоидального тока (угол), отсчитываемый от точки перехода тока через нуль к положительному значению.

Время, за которое ток в проводнике дважды изменяет своё направление, называют периодом T. Период измеряется в секундах.

Циклической частотой f называется величина обратная периоду . Измеряется в Герцах, в домашней розетке циклическая частота тока равна 50 Гц, её также называют промышленной частотой. При такой частоте период тока равен , это значит, что за две сотых секунды ток в нашей розетке меняет свое направление два раза.

Угловая частота ω показывает с какой скоростью изменяется фаза тока и определяется как

Среднее значение Iср синусоидального тока за период Т определяют из геометрических представлений: площадь прямоугольника с основанием T/2 и высотой Iср приравнивают площади ограниченной кривой тока:

После упрощения получаем формулу:

Действующее значение синусоидального тока определяется из энергетических представлений: действующий ток равен по величине такому постоянному току I, который в активном сопротивлении R за период Т выделяет такое количество энергии, как и данный ток i. То есть действующее значение, это своеобразная аналогия между переменным и постоянным током.
Для синусоидального тока действующее значение определяется по формуле:

Это основное что нужно знать о переменном синусоидальном токе.

СИНУСОИДАЛЬНЫЙ ПЕРЕМЕННЫЙ ТОК

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СИНУСОИДАЛЬНОГО ТОКА

Переменный электрический ток, который используется в промышленности и в быту, изменяется в зависимости от времени по синусоиде. Международная стандартная промышленная частота переменного тока выбрана равной 50 Гц. Только в США (в большинстве штатов) и Японии применяется ток с частотой 60 Гц. На рис. 8 показана зависимость синусоидального переменного тока от времени.

Рис. 8. Синусоидальный переменный ток

В каждый момент времени значение тока различно и называется мгновенным значением — i. Модуль наибольшего значения тока за половину периода называется амплитудным значением — 1щ. Мгновенные и амплитудное значения связаны соотношением

В этом выражении амплитудное значение является постоянной величиной, а мгновенное — зависит от угла а, связь которого с временем т мы рассмотрим в разделе 2.5.

Важной характеристикой переменного тока является его действующее значение. Определение этой величины дается в разделе 2.3.

СИНУСОИДАЛЬНОЕ ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ

Синусоидальный переменный ток возникает в электрической цепи под действием синусоидальной электродвижущей силы (ЭДС). В электроэнергетике источником ЭДС служат вращающиеся электрические машины — генераторы. Вращающаяся часть генератора (ротор) содержит обмотки, по которым проходит постоянный ток. Этот ток возбуждает магнитное поле, которое пересекает обмотки, расположенные в неподвижной части генератора — статоре. Форма магнитопроводов обмоток возбуждения подобрана таким образом, чтобы магнитный поток вдоль окружности машины в воздушном зазоре при вращении ротора изменялся по синусоидальному закону. В соответствии с законом ЭМИ в обмотках статора возникает переменная ЭДС, меняющаяся также по синусоидальному закону [1] .

В электрической цепи синусоидальный ток вызывает на каждом участке синусоидальное падение напряжения или синусоидальную разность потенциалов.

Объединим все сказанное общим понятием «электрическое напряжение» и покажем его зависимость от времени на рис. 9.

Рис. 9. Синусоидальное переменное напряжение

Так же как для синусоидального тока, мгновенное значение напряжения будет

Основные параметры синусоидального тока

Анализ электрических цепей, в которых действуют сигналы любой формы, можно свести к анализу цепей с синусоидальными воздействиями. Поэтому изначально рассмотрим все особенности расчета цепей, относящиеся к синусоидальным токам и напряжениям, а затем обобщим их на цепи с другими видами воздействия.

Рассмотрим основные понятия, характеризующие переменный синусоидальный ток. Синусоидальный ток является периодическим. Пусть ток изменяется по закону синусов . График этой функции показан на рис. 4.3.

Дадим определение основным параметрам синусоидального тока.

Мгновенное значение – это значение тока в данный момент времени. Мгновенное значение меняется от точки к точке и обозначается строчной буквой i. Например, в момент времени t1мгновенное значение будет i1, в момент времени t2мгновенное значение будет i2.

Мгновенные значения переменного тока в течение одной половины периода положительны, а в другие полпериода отрицательны. Одно из двух возможных направлений тока в проводнике принимается условно за положительное направление, этому направлению соответствуют положительные мгновенные значения. И наоборот, другому направлению тока в проводнике будут соответствовать отрицательные мгновенные значения.

Введение понятия положительных направлений токов, ЭДС и напряжений необходимо, во-первых, для правильного составления уравнений Кирхгофа при расчете электрических цепей, а во-вторых – для анализа магнитных цепей, так как направление магнитных потоков зависит от направления токов в проводниках.

Амплитуда– наибольшее значение переменного тока. Амплитуда – это мгновенное значение, которое достигается в моменты времени, для которых угол . Амплитуда тока обозначается прописной буквой с индексом – Im. Аналогично обозначаются амплитуды напряжений – Um и ЭДС – Em.

Периодом Т называется наименьший промежуток времени, за который мгновенное значение тока, пройдя полный цикл, достигает первоначального значения. Период измеряется в секундах [c].

Частотапеременного тока (циклическая) – величина, обратная периоду

.

Так как время Т измеряется в секундах, частота f измеряется в или герцах. На практике, как правило, пользуются понятием частоты, а не периода. Международная стандартная частота равна 50 Гц. Только в США и Японии применяется ток с частотой 60 Гц. В некоторых случаях применяется оборудование, работающее на нестандартных частотах. Например, в авиации с целью уменьшения веса оборудования используют частоту 400 – 800 Гц. В радиотехнике и технике связи передача информации осуществляется на частотах до нескольких тысяч мегагерц.

Фазаили фазовый угол – это угловое значение аргумента синусоидальной функции .

Начальная фаза – значение фазы синусоидального тока в начальный момент времени t = 0: .

Угловая частота скорость изменения фазового угла. За время, равное периоду, фазовый угол равномерно изменяется на 2π. Поэтому угловую частоту можно определить как

;

так как , то угловая частота связана с циклической соотношением .

Синусоидальный ток. Определение, параметры.

Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.

Читать еще:  Инструкция по сгибанию трубы из нержавейки

Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Названа в честь ученого Герца. Величина обратная частоте называется периодом колебания T=1/f. Период измеряется в секундах. Определение периода звучит так период это время полного колебания. Если представить себе маятник часов то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.

Амплитуда синусоидального тока это максимальное значение тока, которое он достигает за период колебания. Опять же если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.

Начальная фаза синусоидального тока это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.

Математически синусоидальный ток описывается уравнением:

i=Im*sin(wt+j)

i мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.

Im амплитуда тока.

j начальная фаза

w угловая частота выражается как

Синусоидальный ток и его характеристики

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают . Период Т — это время, за которое совершается одно полное колебание.

Частота равна числу колебаний в 1 с (единица частоты — герц (Гц) или

Угловая частота (единица угловой частоты — рад/с или )

Аргумент синуса, т. е. называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ).

Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их и

Синусоидальный ток

Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.

Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Названа в честь ученого Герца. Величина обратная частоте называется периодом колебания T=1/f. Период измеряется в секундах. Определение периода звучит так период это время полного колебания. Если представить себе маятник часов то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.

Амплитуда синусоидального тока это максимальное значение тока, которое он достигает за период колебания. Опять же если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.

Начальная фаза синусоидального тока это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.

Рисунок 1 — Графическое представление синусоидального тока

Математически синусоидальный ток описывается уравнением:

i мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.

Основные параметры синусоидального тока

ЛЕКЦИЯ 2

СИНУСОИДАЛЬНЫЙ ТОК. ФОРМЫ ЕГО ПРЕДСТАВЛЕНИЯ.

В практике электротехники в качестве переменного тока широкое применение нашел ток синусоидальной формы. Это обусловлено рядом преимуществ:

-генераторы синусоидального тока значительно дешевле в производстве, чем генераторы постоянного тока;

— переменный ток легко преобразуется в постоянный;

— трансформация и передача электрической энергии переменным током экономичнее чем постоянным;

-двигатели переменного тока имеют простую конструкцию, высокую надежность и невысокую стоимость.

В настоящее время переменный ток применяется в промышленном приводе и в электроосвещении, в сельском хозяйстве и на транспорте, в технике связи и в быту. Производство электрической энергии также осуществляется на переменном токе. Огромную роль в деле внедрения переменного тока сыграли русские ученые П.Н.Яблочков и М.О.Доливо-Добровольский.

Основные параметры синусоидального тока

Переменным называют ток (напряжение, ЭДС), изменяющийся во времени по величине и направлению. Синусоидальный ток может быть представлен посредством действительной функции времени — синусной и косинусной, например:

(2.1)

где Im — максимальная амплитуда тока (амплитудное значение);

w — угловая частота, причем ;

f — частота колебаний [Гц];

Т — период [C];

ji — начальная фаза, определяет значение тока в момент времени t=0, т.е.

На рис. 2.1 приведен график двух колебаний с разными начальными фазами j1 и j2, причем j1 > j2. Амплитуда гармоник проходит через нуль, когда:

wt + j = pn (n = 0,1,2. ), т.е. в моменты

.

Так как j1> j2, то t1 имеет место раньше t2:

Начальная фаза часто задается в градусах. Поэтому при определении мгновенного значения тока аргумент синуса ( слагаемые wt и j) нужно привести к одной единице измерения (рад. или градус).

Иногда гармоническое колебание представляется в косинусной форме. Легко видеть, что для перехода к такой форме в (2.1) достаточно изменить лишь начальную фазу, т.е.:

Промышленная частота переменного тока в России и всех странах Европы равна 50 Гц, в США и Японии — 60 Гц, в авиации — 400 Гц. Снижение частоты ниже 50 Гц ухудшает качество освещения. Увеличение частоты ухудшает условия передачи электроэнергии на большие расстояния.

Выражение для синусоидального напряжения аналогично (2.1), т.е.:

u(t) = Um × sin (wt + ju) (2.2)

Аналогично (2.1) определяются и основные параметры напряжения.

Кроме уже названных параметров, в практике электротехники часто пользуются понятиями среднего и действующего значений тока и напряжения. Рассмотрим их.

Под средним значением синусоидального тока понимают его среднее значение за полпериода:

(2.3)

Видим, что среднее значение синусоидального тока составляет 2/p » 0,64 от амплитудного. Аналогично определяется среднее значение синусоидального напряжения

.

Действующим называют среднее квадратичное значение синусоидального тока (напряжения) за период:

.

,

.

Видим, что действующее значение синусоидального тока составляет 0,707 от амплитудного. Аналогично определяется действующее значение синусоидального напряжения:

.

Если говорят о значениях переменного тока или напряжения, то, как правило, подразумевают их действующее значения. Например, напряжение в однофазной сети переменного тока 220 В — действующее. При этом амплитудное значение Um @ 310 В.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×