16 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое коэффициент трансформации

Коэффициент трансформации счетчика электроэнергии

Разберемся, что такое, коэффициент трансформации. По сути это техническая величина. Все дело в следующем. В целях учета электроэнергии, потребленной крупным объектом (вроде жилой многоэтажки), появляется необходимость использования специализированного оборудования, понижающего мощность напряжения, передаваемого на контакты общедомового счетчика.

Эти приборы учета не соединяют, непосредственно с электрической сетью дома, в связи с невозможностью подключения большой мощности напряжения, через традиционный счетчик прямого включения (они не работают с большими токами).

Для того, чтобы не допустить выхода из строя счетчика, нужно уменьшить мощность подаваемого напряжения.

Для этих целей используют трансформаторы, их подбирают исходя из требуемого уровня нагрузки.

Коэффициент трансформации счетчика электроэнергии, изменяется в зависимости от смонтированного оборудования. Таким образом, прибор учета электроэнергии, работающий в паре с трансформатором, считывает нагрузку, пониженную в 30, 40 или 60 раз. Проще говоря, эти цифры и представляют собой коэффициенты трансформации.

Как определить коэффициент трансформации?

Часто бывает так, что на приобретенном трансформаторе, невозможно найти нужной информации, в частности данных, об уровне преобразования, подаваемого на него напряжения. Эта информация важна для выбора прибора учета электроэнергии. Обладая данными о коэффициенте трансформации используемого оборудования, можно понять, во сколько раз снижена электрическая нагрузка. Узнать эти показатели, можно проведя определенные расчеты.

Для этого, вам понадобиться выяснить уровень напряжения на вторичной обмотке. Далее цифры показателей тока, на первичной обмотке, делят на полученное значение (данные на вторичной обмотке). Таким образом, вы узнаете нужный вам коэффициент, для прибора учета электроэнергии.

Расчетный коэффициент учета, что это такое?

Для уточнения реального уровня электропотребления, необходимо снять показания с вашего прибора учета электроэнергии и умножить его на коэффициент трансформации трансформатора (то есть в 30,40 или 60 раз). Это будет выглядеть приблизительно следующим образом. На циферблате установленного у вас счетчика учета электроэнергии, показана цифра 60 кВт*ч. В доме используется трансформатор, понижающий напряжение в 20 раз (это коэффициент). Умножаем обе цифры (60*20=1200кВт*ч) . Получившаяся цифра и есть реальный расход электроэнергии.

Разновидности приборов учета электроэнергии

Все существующие сегодня счетчики, разделяют по принципу их действия, бывают трехфазные и однофазные. К сети их подключают не напрямую, между ними, в цепи, в большинстве случаев, присутствует трансформатор. Но возможно и прямое включение. Для сетей с напряжением до 380В, применяют приборы учета электроэнергии от 5 до 20А. Мы уже знаем, что коэффициент трансформации, это разница между напряжением на входе в трансформатор, и напряжением на его выходе.

На электросчётчик попадает чистая электроэнергия, имеющая постоянное значение. Сегодня прибегают к использованию двух основных разновидностей приборов учета. До середины девяностых годов прошлого века, монтировали в основном счетчики индукционного типа. Они продолжают работать и сегодня, но постепенно идет замена их на электронные счетчики (это утверждение касается и общедомового счетчика).

Счетчик индукционного типа имеет устаревшую конструкцию. В основе его работы, взаимодействие магнитных полей, продуцируемых в индуктивных катушках и диске, который в процессе вращения считывает расход электричества. Недостаток этих приборов состоит в том, что они не в состоянии обеспечить многотарифный учет. К тому же, нет возможности удаленной передачи данных.

В основе работы электронных счетчиков, лежат микросхемы, они напрямую преобразуют считываемые сигналы. В этих устройствах нет вращающихся частей, что значительно повышает их надежность и долговечность службы. Проще говоря, коэффициент трансформации счетчика, оказывает прямое влияние на точность выдаваемых им данных.

Раньше, показатели точности составляли 2.5, но приборы учета, используемые сегодня, имеют класс точности, на уровне 2.0. Такие высокие данные точности, имеет именно оборудование электронного типа. Сегодня повсеместно устанавливают только электронные счетчики, которые уверенно вытесняют индукционные.

Главное преимущество, технологически продвинутого оборудования, состоит в том, что они являются многотарифными. Такое обстоятельство позволяет не только учитывать суточный уровень потребления электроэнергии, но также и в соответствии с порой года. Смена тарифов контролируется автоматикой и производится автономно, не требуя вмешательства человека.

Коэффициент трансформации счетчика электроэнергии – что это такое и как рассчитать?

Данный коэффициент — это характеристика, показывающая достоверность показаний прибора-измерителя. Этот показатель определяет степень работоспособности станции трансформаторов тока. Коэффициент трансформации (КТ) счетчика электроэнергии — один из значимых показателей, позволяющий вести правильный учет расхода электроэнергии. Разберемся подробнее в этом вопросе.

Понятие о коэффициенте трансформации

Для произведения рационального контроля электроэнергии на крупных объектах используется специальное оборудование, снижающее мощность на выходах электросчетчика. Данные устройства не соединены напрямую с электросетью здания, что обозначает невозможность прямого включения высоковольтного напряжения к общей электросети. Отсюда следует, чтобы минимизировать возникновение неисправностей надо уменьшать мощность с помощью трансформаторного оборудования. В таком случае электросчетчики зафиксируют нагрузку, сниженную в десятки раз. Полученные таким образом результаты и будут КТ, а, чтобы определить настоящий расход электричества, следует умножить показания электросчетчика на используемый расчетный коэффициент.

Расчетный коэффициент учета


Чтобы уточнить реальный уровень потребления электрической энергии, требуется снять показания электросчётчика, после чего умножить их на КТ.

На практике КТ трансформатора, понижающего напряжение в домашних условиях, составляет 20 единиц, поэтому данные с прибора учёта нужно умножать именно на эту цифру, в результате чего и будет получен реальный расход электрической энергии.

Формула для определения коэффициента трансформации

Из соотношения видно, как отличаются входные показания напряжения и тока от выходных. При значениях больше единицы, проводятся мероприятия по снижению напряжения, при меньших, наоборот — повышают с помощью специальных устройств. Данные коэффициенты различаются для показания напряжения и тока. Формула расчета:

  • U1 и U2 – показания напряжения на 1 и 2 обмотке;
  • N1 и N2 – число витков первичной и вторичной обмотки;
  • I2 и I1 – сила тока в первичной и вторичной обмотке.

Чаще всего данные показатели указаны в документах оборудования и приборов. Если документов нет, то все показатели можно определить по условным знакам на корпусах устройств. Возникает проблема, когда нужно произвести расчет КТ по экспериментальным данным. Для этого электричество пропускают через первичную обмотку электроприбора и замыкают на вторичной, а затем измеряют ток во вторичной обмотке.

Расчет показаний счетчика непрямого подключения

ТТ устанавливаются в сети, потребляющие сотни киловатт эл энергии. Принцип работы такого преобразователя основан на снижении величины электротока до значения, позволяющего подключить через него стандартный электросчетчик. Например, счетчик на 5 А, в сети 150 А, ТТ должен снизить показатель в 30 раз, то есть, коэффициент трансформации, используемый при подсчете расхода, тоже 30.

Как считать показания счетчика с трансформатором тока? Нужно их просто считать и отнять показатель, считанный в начале расчетного периода.

Потом полученная цифра умножается на коэффициент трансформации, указанный в технической документации или акте поставщика электроэнергии, рассчитанный самостоятельно. Это и есть ответ на вопрос, как рассчитать электроэнергию с трансформаторами тока.

Индукционные счетчики

Приборы первого типа в своем составе имеют две катушки, одна из них ограничивает переменный ток, исключая неточности и образуя магнитное поле. Вторая — образует переменный ток. К плюсам этих счетчиков можно отнести их высокую работоспособность, простая конструкция. Несмотря на перепады напряжения, такие счетчики прослужат очень долго. Индукционные устройства достаточно габаритны, но имеют доступную цену. Даже несмотря на распространенность такие счетчики энергоемкими и низкой точности.

Расчет коэффициента спроса на щит

Расчет коэффициента спроса на щит будем выполняют в два этапа:

  1. Определение коэффициентов спросов для разных типов потребителей;
  2. Определение коэффициента спроса на щит.

Однако, технически для этого в расчетной таблице DDECAD потребуется выполнить три шага:

  1. Определение коэффициентов спросов для разных типов потребителей;
  2. Определение коэффициента спроса на щит;
  3. Указание коэффициентов спроса на щит и на группы.

2.1. Расчет коэффициента спроса сети освещения

Расчет коэффициента спроса для расчета питающей, распределительной сети и вводов в здания для рабочего освещения выполняются в соответствии с требованиям п.6.13 СП 31‑110‑2003 по Таблице 6.5.

Коэффициент спроса для расчета групповой сети рабочего освещения, распределительных и групповых сетей аварийного освещения принимают равным единице в соответствии с п.6.14 СП 31-110-2003.

Установленная мощность светильников рабочего освещения Pуст осв. = 7,4 кВт. Принимаем, что рассматриваемый офис относится к зданиями типа 3 по Таблице 6.5 СП 31-110-2003. В таблице данная мощность отсутствует, поэтому, в соответствии с примечанием к таблице, определяем коэффициент спроса при помощи интерполяции. Пользователи DDECAD могут легко и быстро определить коэффициент спроса при помощи встроенного в программу расчета. Получаем Kс осв. = 0,976.

2.2. Расчет коэффициента спроса розеточной сети

Расчет коэффициента спроса розеточной сети выполняют в соответствии с п.6.16 СП 31-110-2003 и Таблице 6.6. Получаем Кс роз. = 0,2.

Электронные приборы учета

Данные счетчики достаточно дорогостоящи, однако цена оправдывает качество. Эти устройства имеют высокий класс точности, что сводит погрешности показаний к минимуму. У данных устройств есть функция многотарифности. Принцип действия такого счетчика основан на том, что он трансформирует сигнал в цифровой код, который затем расшифровывается микроконтроллером. Затем данные выводятся на дисплей. Такие счетчики имеют возможность вести учет в нескольких направлениях, они намного компактнее и занимают меньше места. К отрицательным качествам следует отнести гиперчувствительность к скачкам напряжения, а также такие счетчики непригодны для ремонта.

Полезные рекомендации

Электросчетчики позволяют посмотреть количество потребляемой энергии, чтобы адекватно оценить расход и посчитать итоговую оплату. Устройства различаются по классу точности, мощности, степени допустимой погрешности. Чтобы получить точные данные, снимают показания, с помощью коэффициента и калькулятора вычисляют фактическое потребление.

Для жилых домов в городской зоне и поселках используют небольшие устройства – однофазные счетчики (например, Меркурий 230 ART-03 CN, производство г. Москва) или многотарифные приборы, подходящие для сети в 220 Вольт или 120 Ампер.

Важно, чтобы каждое новое устройство имело пломбу проверки государственного образца. Без этого показания электросчетчика не будут считаться достоверными, и приниматься контролирующими органами. Выбирать подходящий счетчик и высчитывать фактические показатели можно самостоятельно или через контролеров.

Базовая классификация устройств трансформаторного тока

Это очень большая группа приборов, которая может делиться на различные группы. Среди самых распространенных:

  1. Классы по способу установки:
  • Монтируемые на поверхности или опорные трансформаторы.
  • Проходные, которые крепятся к шинопроводу и играют роль изолятора.
  • Шинные, прикрепленные к шине, выполняющей функцию первичной обмотки.
  • Встроенные, устанавливаемые устройствах силового типа, а также баковых выключателях.
  • Разъемные, оперативно устанавливающиеся на кабелях и не требующие отключения цепи.

Трансформатор тока: а) — устройство трансформатора тока.

  • Классы по типологическим особенностям изоляции:
  • С изоляцией литого типа, в качестве которой используется эпоксидная смола и специальные изолирующие лаки.
  • Помещенные в корпус из пластмассы.
  • Имеющие высокоэффективную твердую полимерную, бакелитовую или фарфоровую изоляцию.
  • Изолированные вязкими составами, обладающими обволакивающими свойствами.
  • Масляные, изолированные специальными составами.
  • Газонаполненные, использующиеся для высоких и сверхвысоких напряжений.
  • А также смешанная бумажно-масляная изоляция с внушительным ресурсом эффективности.

Трансформаторы тока с литой изоляцией: а) — многовитковый, б) — одновитковый, в) — шинный

Пример расчета

Рассмотрим, как рассчитать показания счетчика электроэнергии с трансформаторами тока с коэффициентом трансформации 100/5=20.

Например, на счетчике было значение, на 200 кВт превышающее цифру, списанную в начале периода.

При поиске ответа на вопрос, как рассчитать показания счетчика электроэнергии непрямого подключения с трансформаторами тока, важно учесть, что погрешность между реальным значением и указанным в техдокументации не должна превышать 2%. Показание должно быть снято с рабочего ответвления.

Решая вопрос, как посчитать показания счетчика электроэнергии, включенного в сеть с трансформатором тока, необходимо учитывать, что у любого прибора есть определенный срок службы. После того, как он закончился, не стоит надеяться, что считанные показания будут точные.

При покупке преобразователя необходимо проверить год и месяц выпуска. Это оборудование проверяется каждые 4 года, поэтому не должно быть просроченное.

Данные на шильдике изделия должны полностью совпадать с информацией в техпаспорте.

При выборе трехфазного ТТ необходимо учесть, что период со дня выпуска до пломбирования не должен превышать 12 месяцев. В противном случае возникнут дополнительные затраты на покупку другого преобразователя или госпроверку уже приобретенного.

Сколько составляет норматив на 1 человека в 2020 году?

Это исключительно региональная цифра, которая отличается в зависимости от нескольких факторов. Если рассматривать наиболее крупные города РФ, то на 2020 год показатели следующие:

ГородОдин проживающий с газовой плитойОдин проживающий с электроплитойСемья с газовой плитойСемья с элеткроплитой
Москва50804570
СПб781114863
Челябинск10018090130
Ростов1131828290
Владимир10019075130
Краснодар971476095
Екатеринбург10216063100
Читать еще:  Как выбрать карнизы для ванной

Кроме того, имеется коэффициент, который отличается в зависимости от причины расчета тарифов по нормативу. Самый большой коэффициент в случае, если счетчик умышленно сломан или электроэнергия подключена так, что минует прибор учета.

Без повышенного коэффициента могут платить только небольшие категории граждан, у которых есть уважительная причина не устанавливать счетчик или нет возможности передавать данные с него.

Общие требования

Трансформаторы тока – это оборудование, которое устанавливают, чтобы снизить (преобразовать) показатель до уровня, нормального для работы механизмов учета и контроля (счетчиков).

Другими словами данные приборы (производства компаний Меркурий, Ленэлектро и других) устанавливают на участках со значительной мощностью в том случае, когда прямое подключение невозможно из-за высоких токов. Непосредственное подсоединение без соответствующего предохранителя приводит к сгоранию магнитных катушек и выходу оборудования из строя.

Как правило, подключением трансформаторов тока занимаются мастера специальных монтажно-наладочных организаций. На крупных производствах существуют отдельные цеха и лаборатории.

В первую очередь проводится ревизия техники – внешний осмотр, проверка на работоспособность и предельную мощность. Кроме этого замеряется тангенс внутреннего изоляционного провода и сопротивления. Исходя из полученных данных, выбирается схема подключения, делается разметка, просверливается необходимое количество отверстий.

Коэффициент трансформации

Этим термином обозначают пропорциональность изменения напряжения на выходе вторичной обмотке при подключении соответствующего устройства к источнику питания. Коэффициент трансформации определяет основные параметры трансформатора. Для рабочих расчетов функциональных компонентов и различных вариантов подключения нагрузки применяют специализированные алгоритмы.

Что такое коэффициент трансформации

По классическому определению коэффициентом трансформации трансформатора (Ктр) называют отношение напряжений (Uвых/Uвх) при отсутствии нагрузки. Режим холостого хода подразумевает отсутствие учета влияния подключенных потребителей энергии. Для оценки комбинированных устройств с несколькими вторичными обмотками отдельно рассматривают соответствующее количество коэффициентов.

К сведению. При работе с трехфазными сетями следует учитывать различия между Ктр по напряжению и ЭДС.

Свойства трансформатора

В представленной выше схеме серийного изделия функциональность обеспечивают две катушки индукции, закрепленные на сердечнике из металла. При подключении к источнику питания переменного тока формируется электромагнитное поле, которое создает ток во второй обмотке по базовым законам электродинамики. В упрощенном варианте пренебрегают затратами энергии на повышение температуры проводников и потерями, которые обеспечивают вихревые токи. Для приблизительного расчета применяют формулу:

Ктр = Uвх/Uвых = N1/N2, где N – количество витков в первичной и вторичной обмотках, соответственно.

Масштабирование напряжения

Этот термин подчеркивает суть рассматриваемого явления. Фактически трансформация (преобразование) энергии в данном случае не происходит. Изменяется в сторону увеличения (уменьшения) определенный параметр. Несмотря на взаимную связь всех базовых компонентов, отдельно рассматривают только важнейший показатель для решения определенной инженерной задачи (напряжение, силу тока или электрическое сопротивление).

Если подключить трансформатор по схеме, показанной на картинке выше, формулу коэффициента трансформации можно определить следующим образом:

Ктр = Uвх/Uвых = (E*N1 + I1*R1)/ (E*N2 + I2*R2),

где:

  • E – электродвижущая сила, которая наводится в одиночном витке;
  • I, R – токи, активные электрические сопротивления (значения для соответствующих обмоток).

Масштабирование силы тока

В этом примере первичную обмотку подключают к источнику питания последовательно через небольшую нагрузку (Ктр = I1/I2). Зависимость токов и количества витков:

В этом выражении Ix – ток холостого хода, который обусловлен отмеченными выше вихревыми явлениями и потерями на повышение температуры магнитопровода. Простым математическим преобразованием можно получить значение коэффициента трансформации через количество витков (без учета сопутствующих энергетических затрат):

Масштабирование сопротивления

В отдельных ситуациях функциональность электротехнического устройства (отдельных блоков) будет определять именно сопротивление подключаемой нагрузки. Наглядный пример – согласование типовых низкоомных динамиков (6-8 Ом) и выходного тракта усилителя мощности звукового диапазона.

При воспроизведении технологии сварки в рабочей области фактически поддерживается режим короткого замыкания. Если не отделить эту часть от источника питания, сеть будет подвергаться чрезмерным нагрузкам. В этой ситуации пригодится трансформатор, который сохраняет путь передачи электроэнергии с одновременным выполнением необходимых защитных функций.

Для этих примеров особое значение приобретает баланс:

В этом выражении приведены обозначения мощностей:

  • W1 – потребления;
  • W2 – передаваемой в нагрузку;
  • Wп – потерь.

Последовательность элементарных преобразований позволит получить следующие выражения, по которым будут вычисляться отдельные параметры:

  • W1 = I1 * U1 = U12/Z1;
  • W2 = I2 * U2 = U22/Z2;
  • с исключением потерь: U12/Z1 = U22/Z2;
  • Ктр (по сопротивлению) = U12/U22 = Z1/ Z2 = Ктр2 (по напряжению).

К сведению. В этих выражениях Z1 (Z2) – это сопротивления нагрузки для источника питания при подключенном трансформаторе или без него, соответственно.

Итоговые замечания

Следует подчеркнуть неизменность воспроизведения трансформатором рабочих процессов в любом из представленных выше примеров. Тип масштабирования будет определяться целевым назначением определенной схемы. В зависимости от необходимости учитывают коэффициент трансформатора по соответствующему параметру (U, I или Z). Способность повышать, понижать или поддерживать равный уровень напряжения объясняется только количеством витков.

К сведению. При расчете измерительной аппаратуры и в других ситуациях для повышения точности учитывают энергетические потери, фазовый сдвиг электрических параметров и влияние внешних факторов.

Коэффициент трансформации трансформатора

Чтобы определить Ктр опытным путем, применяют несколько вольтметров. Рекомендуется использовать однотипные приборы с одинаковым классом точности.

Методики

РисунокТрансформаторИсточник питания
а)однофазныйоднофазный
б)трехфазныйтрехфазная схема возбуждения
в)трехфазныйоднофазная схема возбуждения
г)трехфазныйнулевой вывод, однофазная схема возбуждения

Формула коэффициента трансформации трансформатора

Устройства этой категории не преобразуют энергию в разные виды. Трансформаторы изменяют электрические параметры. Специальным коэффициентом (Ктр) обозначают соответствующий множитель. При выходном напряжении большем, чем входное, Ктр становиться меньше единицы. Такой трансформатор будет называться повышающим. В обратной ситуации (Ктр = 220/ 110 = 2>1) – понижающим.

Виды трансформаторов и их коэффициенты

Для изменения определенных проектом параметров применяют соответствующие схемы включения и расчетные формулы:

  • первичная обмотка подсоединена к источнику питания параллельно (масштабирование по напряжению): Ктрu = Uвх/Uвых = N1/N2;
  • аналогичный способ, но с учетом изменения сопротивления: Ктрz = Uвх2/Uвых2 = Z1/ Z2 = Ктрu2;
  • последовательное подключение для масштабирования силы тока: Ктрi = Iвх/Iвых = N2/N1 (для повышения точности следует добавить энергетические потери, которые определяют в режиме холостого хода).

Особенность учета витков

При рассмотрении отдельных конструкций следует обратить внимание на несколько важных деталей. Энергия передается с помощью электромагнитного поля. Сердечник, созданный из ферромагнитного материала, улучшает распределение силовых линий. Это снижает сопутствующие потери. Однако и в этом случае отдельные линии проходят через воздушную среду. Приходится учитывать взаимное влияние разных витков. Основные полезные функции выполняет часть поля, сформированная во внутреннем пространстве магнитопровода.

Видео

Коэффициент трансформации

Коэффициент трансформации – показывает значение во сколько раз изменилась величина вторичного тока и напряжения. Также с его помощью можно определить какой трансформатор: понижающий или повышающий.

  1. Для силового трансформатора
  2. Трансформатор тока
  3. Трансформатор напряжения
  4. Автотрансформатор

Для силового трансформатора

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Формула по вычислению коэффициента трансформации

  • U1 и U2 — напряжение в первичной и вторичной обмотки,
  • N1 и N2 — количество витков в первичной и вторичной обмотке,
  • I1 и I2 — ток в первичной и вторичной обмотки.

Трансформатор тока

Формула для вычисления коэффициента трансформации ТТ:

Значения коэффициентов обычно очень большие по сравнению с силовым трансформатор. Величины могут быть такими, как представлено в таблице:

Определим коэфф. трансформации: возьмём ТТ со значениями которые выделены в таблице 600/5 = 120. Также можно взять любой трансформатор 750/5 = 150; 800/2 = 400 и тд.

Подробнее о трансформаторе тока(ТТ): Читать статью

Трансформатор напряжения

Формула для вычисления коэффициента трансформации ТН:

Давайте рассчитаем коэффициент трансформации для ТН который показана на фото ниже:

Нужно взять напряжение первичной обмотки(красная стрелка) и разделить на напряжение вторичной обмотки(жёлтая стрелка). 35000/100 = 350.

Подробнее о трансформаторе напряжения(ТН): Читать статью

Автотрансформатор

Формула для вычисления коэффициента трансформации у автотрансформатора:

Подробнее об автотрансформаторе(ЛАТР): Читать статью

Что такое коэффициент трансформации

  1. Что такое коэффициент трансформации?
  2. Методы расчета коэффициент трансформации.
  3. Как подготовить приборы к расчету?
  4. Измерение потерь холостого хода

Что такое коэффициент трансформации?

Проверка коэффициента трансформации подразумевает расчет отношения напряжений U1 и U2. U1 – это напряжение концов обмотки трансформатора. U2 – это напряжение выводов вторичной обмотки, которое определяется во время холостого хода. В теории устройство не претерпевает потери мощности. Но на практике часто встречаются ситуации, при которых наблюдается понижающий или повышающий коэффициент. В таком случае без специальных расчетов не обойтись. Коэффициент можно найти с помощью простой формулы:

Данное значение показывает, насколько токовое напряжение в одной обмотке отличается от другой при воздействии определенных нагрузок. Такие измерения позволяют вовремя устранить неисправности и предотвратить риск возникновения аварийной ситуации.

Методы расчета коэффициент трансформации

Для проведения испытаний вам понадобится вольтметр. С помощью этого прибора можно убедиться в том, что соотношение количества витков соответствует техническим стандартам. Для этого необходимо измерить коэффициенты на холостом ходу. Эти проверки также позволяют определить полярности и возможные повреждения трансформатора.

Существует 3 метода определения коэффициента трансформации:

  • технические документы от производителя;
  • мост переменного тока;
  • последовательные измерения вольтметром.

Классический метод измерений предполагает использование двух вольтметров. Номинальный коэффициент определяется путем деления показателей напряжения, которые фиксируются на холостом ходу.

При работе с новым прибором эти данные можно посмотреть в техническом паспорте производителя. При проверке трехфазных трансформаторов измерения проводятся одновременно для одной и другой обмотки.

Встречаются ситуации, при которых прибор имеет скрытые выводы. В таком случае измерения проводятся только в том месте, в котором провода соединяются с устройством и не находятся под кожухом. Они находятся снаружи, поэтому доступны для проведения проверки. При работе с устройством одной фазы задача упрощается. Для исследования понадобятся значения двух вольтметров, расположенных в разных концах обмотки. Такая схема учитывает подключенную нагрузку цепи №2.

Наиболее современный способ определения коэффициентов позволит быстро получить показатели должного уровня точности. Универсальные приборы не требуют подведения к трансформатору каких-либо источников напряжения. Данным методом пользуются профессиональные электрики. При наличии специальных приборов с такой задачей справится и неподготовленный человек.

При анализе токов трансформатора создается цепь, в которой величина тока от 20 до 100 процентов пропускается по обмотке первичного типа. При этом должно и измеряться ответвление – вторичный ток.

Стоит быть предельно осторожными при работе с трансформаторами, имеющими несколько обмоток вторичного типа. Такие устройства могут быть опасными. Вторичные обмотки в таком случае изолируются с целью предотвращения возникновения риска для жизни и рабочего оборудования.

Некоторые типы трансформаторов требуют заземления. Для работы с ними требуется найти в корпусе найти клемму со специальным обозначением «З» (то есть, заземление).

Как подготовить приборы к расчету?

Современные устройства для измерения коэффициентов способны работать в полуавтоматическом режиме, поэтому сложностей при их настройке не возникает. Несмотря на это, пользователю следует знать некоторые особенности выполнения такого задания.

Для определения коэффициентов в трансформаторах с одной и тремя фазами воспользуйтесь схемами, представленными ниже.

Инженерные универсальные приборы для измерения показателей должны соответствовать государственным стандартам. Используйте только ту технику, которая имеет сертификаты качества и соответствия. Важно обращать внимание на материал корпуса и комплектующих. Они должны состоять из надежных составляющих. Такие материалы переносят большие напряжения и отличаются длительным сроком эксплуатации.

Перед использованием прибора убедитесь в том, что датчики находятся на нулевом значении. Несмотря на высокую точность измерений, следует снизить уровень погрешности путем проведения нескольких испытаний. Более точные значения можно получить после нахождения общего арифметического всех полученных результатов.

Стоит запомнить, что номинальное напряжение всегда выше подводимого. Универсальные приборы современного типа предназначены не только для определения коэффициента трансформации. Такие приспособления показывают полярность катушек и значение тока возбуждения в трансформаторах различного типа.

Измерение потерь холостого хода

Такие испытания проводятся для трансформаторов, мощность которых превышает 1000 кВт. Установки мощностью до 1000 кВт можно проверять только после проведения капитального ремонта и частичным изменением магниопровода.

Потери холостого хода у трансформаторов трехфазного типа фиксируются при наличии однофазного возбуждения тока. При проведении работ следует использовать схемы, предоставленные производителем.

Обратите внимание, что коэффициенты установок во время ремонта или эксплуатации не должны отличаться от заводских стандартов более чем на 5%. Для трансформаторов однофазного типа аналогичные значение не превышают 10%.

Решение о начале измерений принимается техническим руководителем на предприятии. Поводом для начала исследований могут стать данные хроматографического анализа газов, растворенных в масле. В этом случае полученные показатели не должны отличаться от исходных норм более чем на 30%. В конце исследования все технические параметры заносятся в соответствующий отчет. Этот документ может использоваться в будущем технологами предприятия для определения уровня амортизации оборудования и его общего технического состояния.

Как_опытным_путем_определить_коэффициент_трансформации

Этим термином обозначают пропорциональность изменения напряжения на выходе вторичной обмотке при подключении соответствующего устройства к источнику питания. Коэффициент трансформации определяет основные параметры трансформатора. Для рабочих расчетов функциональных компонентов и различных вариантов подключения нагрузки применяют специализированные алгоритмы.


Устройство типового трансформатора

Что такое коэффициент трансформации

По классическому определению коэффициентом трансформации трансформатора (Ктр) называют отношение напряжений (Uвых/Uвх) при отсутствии нагрузки. Режим холостого хода подразумевает отсутствие учета влияния подключенных потребителей энергии. Для оценки комбинированных устройств с несколькими вторичными обмотками отдельно рассматривают соответствующее количество коэффициентов.

К сведению. При работе с трехфазными сетями следует учитывать различия между Ктр по напряжению и ЭДС.

Методы определения КПД

КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.

Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.

Непосредственное измерение

Формула для вычисления данного показателя может быть представлена в нескольких выражениях:

ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,

  • ɳ – значение КПД;
  • Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
  • ΔР – величина суммарных мощностных потерь.

Из указанной формулы видно, что значение показателя КПД не может превышать единицу.

После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:

ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,

  • U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
  • Робм и Рс – величина потерь в обмотках и сердечнике.

Представленная формула содержится в ГОСТе, описывающем определение данного показателя.


Расчёты КПД

Определение косвенным методом

Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.

Также читайте: Автоматическое повторное включение — АПВ

Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.

Более подробно про КПД трансформатора можете прочитать здесь(откроется в новой вкладе, читать со страницы 14):Открыть файл

Свойства трансформатора

Как работает и как выбрать трансформатор тока

В представленной выше схеме серийного изделия функциональность обеспечивают две катушки индукции, закрепленные на сердечнике из металла. При подключении к источнику питания переменного тока формируется электромагнитное поле, которое создает ток во второй обмотке по базовым законам электродинамики. В упрощенном варианте пренебрегают затратами энергии на повышение температуры проводников и потерями, которые обеспечивают вихревые токи. Для приблизительного расчета применяют формулу:

Ктр = Uвх/Uвых = N1/N2, где N – количество витков в первичной и вторичной обмотках, соответственно.

Масштабирование напряжения

Этот термин подчеркивает суть рассматриваемого явления. Фактически трансформация (преобразование) энергии в данном случае не происходит. Изменяется в сторону увеличения (уменьшения) определенный параметр. Несмотря на взаимную связь всех базовых компонентов, отдельно рассматривают только важнейший показатель для решения определенной инженерной задачи (напряжение, силу тока или электрическое сопротивление).

Если подключить трансформатор по схеме, показанной на картинке выше, формулу коэффициента трансформации можно определить следующим образом:

Ктр = Uвх/Uвых = (E*N1 + I1*R1)/ (E*N2 + I2*R2),

где:

  • E – электродвижущая сила, которая наводится в одиночном витке;
  • I, R – токи, активные электрические сопротивления (значения для соответствующих обмоток).

Масштабирование силы тока

В этом примере первичную обмотку подключают к источнику питания последовательно через небольшую нагрузку (Ктр = I1/I2). Зависимость токов и количества витков:

В этом выражении Ix – ток холостого хода, который обусловлен отмеченными выше вихревыми явлениями и потерями на повышение температуры магнитопровода. Простым математическим преобразованием можно получить значение коэффициента трансформации через количество витков (без учета сопутствующих энергетических затрат):

Масштабирование сопротивления

В отдельных ситуациях функциональность электротехнического устройства (отдельных блоков) будет определять именно сопротивление подключаемой нагрузки. Наглядный пример – согласование типовых низкоомных динамиков (6-8 Ом) и выходного тракта усилителя мощности звукового диапазона.


Согласующий трансформатор

При воспроизведении технологии сварки в рабочей области фактически поддерживается режим короткого замыкания. Если не отделить эту часть от источника питания, сеть будет подвергаться чрезмерным нагрузкам. В этой ситуации пригодится трансформатор, который сохраняет путь передачи электроэнергии с одновременным выполнением необходимых защитных функций.

Для этих примеров особое значение приобретает баланс:

В этом выражении приведены обозначения мощностей:

  • W1 – потребления;
  • W2 – передаваемой в нагрузку;
  • Wп – потерь.

Последовательность элементарных преобразований позволит получить следующие выражения, по которым будут вычисляться отдельные параметры:

  • W1 = I1 * U1 = U12/Z1;
  • W2 = I2 * U2 = U22/Z2;
  • с исключением потерь: U12/Z1 = U22/Z2;
  • Ктр (по сопротивлению) = U12/U22 = Z1/ Z2 = Ктр2 (по напряжению).

К сведению. В этих выражениях Z1 (Z2) – это сопротивления нагрузки для источника питания при подключенном трансформаторе или без него, соответственно.

Итоговые замечания

Следует подчеркнуть неизменность воспроизведения трансформатором рабочих процессов в любом из представленных выше примеров. Тип масштабирования будет определяться целевым назначением определенной схемы. В зависимости от необходимости учитывают коэффициент трансформатора по соответствующему параметру (U, I или Z). Способность повышать, понижать или поддерживать равный уровень напряжения объясняется только количеством витков.

К сведению. При расчете измерительной аппаратуры и в других ситуациях для повышения точности учитывают энергетические потери, фазовый сдвиг электрических параметров и влияние внешних факторов.

Дополнительные сведения [ править | править код ]

Особенность учета витков [ править | править код ]

Трансформаторы передают энергию из первичной цепи во вторичную посредством магнитного поля. За редким исключением так называемых «воздушных трансформаторов», передача магнитного поля осуществляется по специальным магнитопроводам (из электротехнической стали, например, или других ферромагнитных веществ) с магнитной проницаемостью намного большей, чем у воздуха или вакуума. Это концентрирует магнитные силовые линии в теле магнитопровода, уменьшая магнитное рассеивание, а кроме того, усиливает плотность магнитного потока (индукцию) в этой части пространства, занятой магнитопроводом. Последнее приводит к усилению магнитного поля и меньшему потреблению тока «холостого хода», то есть меньшим потерям.

Как известно из курса физики, магнитные силовые линии — концентричные и замкнутые сами на себя «кольца», охватывающие проводник с током. Прямой проводник с током охватывается кольцами магнитного поля по всей длине. Если проводник изогнуть, то кольца магнитного поля с разных участков длины проводника сближаются на внутренней стороне изгиба (подобно витковой пружине, изогнутой набок, с прижатыми витками внутри и растянутыми снаружи изгиба). Этот шаг позволяет увеличить концентрацию силовых линий внутри изгиба и соответственно усилить магнитное поле в той части пространства. Ещё лучше изогнуть проводник кольцом, и тогда все магнитные линии распределенные по длине окружности «собьются в кучку» внутри кольца. Такой шаг называется созданием витка проводника с током.

Все вышеописанное очень хорошо подходит для трансформаторов без сердечника (либо других случаев с относительно однородной магнитной средой вокруг витков), но абсолютно бесполезно при наличии магнитных замкнутых сердечников, которые, к сожалению, по геометрическим причинам никак не могут заполнить все пространство вокруг обмотки трансформатора. И поэтому, магнитные силовые линии, охватывающие виток обмотки трансформатора находятся в неравных условиях по периметру витка. Одним силовым линиям «повезло» больше, и они проходят только по облегченному маршруту магнитопроводника, другим же приходится часть пути проходить по сердечнику (внутри витка), а остальную по воздуху, для создания замкнутого силового «кольца». Магнитное сопротивление воздуха почти гасит такие линии поля и соответственно нивелирует наличие той части витка, которая породила эту магнитную линию.

Из всего вышесказанного и отображенного на рисунке существует вывод — в работе трансформатора с замкнутым ферромагнитопроводом принимает участие не весь виток, а только небольшая часть, которая полностью окружена этим магнитопроводом. Или другими словами — основной магнитный поток, проходящий через замкнутый сердечник трансформатора создается только той частью провода, которая проходит сквозь «окно» этого сердечника. Рисунок показывает, что для создания 2-х «витков» достаточно дважды пропустить провод с током через «окно» магнитопровода, экономя при этом на обмотке.

По своей сути коэффициент трансформации представляет собой техническую величину. В качестве примера можно взять счетчик электроэнергии прямого включения, работающий с малыми токами нагрузки. Однако токи, которые нужно измерить, имеют гораздо более высокое значение. Их требуется уменьшить, чтобы прибор учета не сгорел. С этой целью используются трансформаторы тока, подбираемые в соответствии с нагрузкой потребителя, а также силовой трансформатор. В связи с этим, коэффициент трансформации может быть разным, в зависимости от оборудования, установленного в квартире.

Коэффициент трансформации трансформатора

Чтобы определить Ктр опытным путем, применяют несколько вольтметров. Рекомендуется использовать однотипные приборы с одинаковым классом точности.


Измерение коэффициента трансформации

Методики

РисунокТрансформаторИсточник питания
а)однофазныйоднофазный
б)трехфазныйтрехфазная схема возбуждения
в)трехфазныйоднофазная схема возбуждения
г)трехфазныйнулевой вывод, однофазная схема возбуждения

Виды трансформаторов и их коэффициенты

Для изменения определенных проектом параметров применяют соответствующие схемы включения и расчетные формулы:

  • первичная обмотка подсоединена к источнику питания параллельно (масштабирование по напряжению): Ктрu = Uвх/Uвых = N1/N2;
  • аналогичный способ, но с учетом изменения сопротивления: Ктрz = Uвх2/Uвых2 = Z1/ Z2 = Ктрu2;
  • последовательное подключение для масштабирования силы тока: Ктрi = Iвх/Iвых = N2/N1 (для повышения точности следует добавить энергетические потери, которые определяют в режиме холостого хода).

Особенность учета витков

При рассмотрении отдельных конструкций следует обратить внимание на несколько важных деталей. Энергия передается с помощью электромагнитного поля. Сердечник, созданный из ферромагнитного материала, улучшает распределение силовых линий. Это снижает сопутствующие потери. Однако и в этом случае отдельные линии проходят через воздушную среду. Приходится учитывать взаимное влияние разных витков. Основные полезные функции выполняет часть поля, сформированная во внутреннем пространстве магнитопровода.

Как правильно считаются показания счетчика электроэнергии с трансформаторами тока

Данный коэффициент — это характеристика, показывающая достоверность показаний прибора-измерителя. Этот показатель определяет степень работоспособности станции трансформаторов тока. Коэффициент трансформации (КТ) счетчика электроэнергии — один из значимых показателей, позволяющий вести правильный учет расхода электроэнергии. Разберемся подробнее в этом вопросе.

Понятие о коэффициенте трансформации

Для произведения рационального контроля электроэнергии на крупных объектах используется специальное оборудование, снижающее мощность на выходах электросчетчика. Данные устройства не соединены напрямую с электросетью здания, что обозначает невозможность прямого включения высоковольтного напряжения к общей электросети. Отсюда следует, чтобы минимизировать возникновение неисправностей надо уменьшать мощность с помощью трансформаторного оборудования. В таком случае электросчетчики зафиксируют нагрузку, сниженную в десятки раз. Полученные таким образом результаты и будут КТ, а, чтобы определить настоящий расход электричества, следует умножить показания электросчетчика на используемый расчетный коэффициент.

Как выбрать трансформатор тока по коэффициенту трансформации? ↑

При выборе такого типа трансформаторных устройств существует ряд определенных ограничений и правил установки дополнительного оборудования. Так, например, установка трансформатора тока, который имеет завышенный Кт, не желательна. При повышенном коэффициенте допускается установка приборов учета непосредственно на приемном вводе. Если же речь о силовых приборах трансформации, то счетчики следует монтировать со стороны напряжения с самым низким значением.

Сегодня на рынке самыми популярными являются именно трансформаторы с одним КТ, так как этот показатель у устройства гарантированно не меняется на протяжении всего времени эксплуатации.

Инженерный имеет все необходимые инструменты для качественного проведения испытания машин постоянного тока, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать испытания машин постоянного тока или задать вопрос, звоните по телефону.

Формула для определения коэффициента трансформации

Из соотношения видно, как отличаются входные показания напряжения и тока от выходных. При значениях больше единицы, проводятся мероприятия по снижению напряжения, при меньших, наоборот — повышают с помощью специальных устройств. Данные коэффициенты различаются для показания напряжения и тока. Формула расчета:

  • U1 и U2 – показания напряжения на 1 и 2 обмотке;
  • N1 и N2 – число витков первичной и вторичной обмотки;
  • I2 и I1 – сила тока в первичной и вторичной обмотке.

Чаще всего данные показатели указаны в документах оборудования и приборов. Если документов нет, то все показатели можно определить по условным знакам на корпусах устройств. Возникает проблема, когда нужно произвести расчет КТ по экспериментальным данным. Для этого электричество пропускают через первичную обмотку электроприбора и замыкают на вторичной, а затем измеряют ток во вторичной обмотке.

Пример расчета потерь электроэнергии


Расчет потерь электроэнергии в кабеле
Посмотрите на картинке выше как выглядит расчет потерь электроэнергии в кабеле.

Щелкнув по ссылке, можно открыть пример расчета потерь электроэнергии, сделанный для 3-фазной линии ВВГнг-ls 2х(5х25) длиной 28 м, через которую подключена электроустановка нежилого помещения мощностью 32.93 квт. Исходные данные: 1. Коэффициент формы графика суточной нагрузки K — это отношение среднеквадратичной мощности к средней за данный период времени. Для жилого строения, которое эксплуатируется 24 часа в сутки, коэффициент формы нужно выбрать равным 1.1. 2. Число часов работы линии за расчетный период, T, час. Здесь все понятно. Если имеется в виду жилое помещение, а считаем за месяц, берем 24 часа 30 дней в месяце, т.е. 720 часов. 3. Средняя активная нагрузка в линии за расчетный период, P, кВт. В нашем примере 32,93 квт. 4. Линейное напряжение, U, кВ. При однофазном подключении 0,22 кв, при трехфазном 0,38 кв. 5. Длина линии, l, м. В нашем конкретном случае длина кабеля от границы балансовой принадлежности до счетчика 28 м. 6. Активное сопротивление проводника, ρ, Ом·мм2/м. Для меди 0,0172, для алюминия 0,027. 7. Cечение жилы, s, мм2. У нас 25, да еще с учетом того факта, что два кабеля проложены и подключены параллельно. 8. Средневзвешенное значение коэффициента реактивной мощности узла нагрузки при известных значениях потребляемых активной и реактивной мощностях определяется. При расчете берем расчетную величину из схемы или проекта. У нас 0,92.

Расчеты 1. Среднее значение тока за расчетный период, А. Вычисляем исходя из расчетной мощности, напряжения в линии, коэффициента мощности по формуле для 3 фазного случая.

Формула для расчета тока, зная напряжение, мощность для 3 фаз

2. Активное сопротивление линии за расчетный период, Ом

Формула для расчета активного сопротивления проводника, зная длину, сечение, удельное сопротивление

3. Потери электроэнергии в линии за расчетный период, кВт·ч

Что такое коэффициент трансформации и 2 типа оборудования

Коэффициент трансформации определяется с помощью специальной формулы В многоквартирных домах потребляется большое количество электроэнергии, поэтому для измерения числа энергии необходимо обязательно прибегать к использованию приборов, которые понижают (или трансформируют) ток перед подачей на установленный общедомовой счетчик. Такими приборами являются различные трансформаторы тока. При этом происходит измерение счетчиком не реальной энергии, а пониженной в несколько раз. Это называется коэффициентом трансфoрмации.

Коэффициент трансформации счетчика электроэнергии

Трансформатор представляет собой две обмотки с разным числом витков, которые индуктивно связаны друг с другом с помощью железного сердечника. Для его работы важен такой показатель, как коэффициент трaнсформации.

Коэффициент трансформации – техническая величина, показывающая преобразовательную или масштабирующую характеристику касательно параметров электрической цепи в трансформаторе.

Другими словами – это показатель отношения числа витков на обоих обмотках трансформатора, а именно вторичной и первичной. С помощью коэффициента трансформации определяется тип трансформатора, поскольку существует коэффициент трансформации как напряжения, так и силы тока.

Рассмотрим типы трансформаторов:

  1. Трансформатор напряжения применяется для преобразования напряжения в цепях – высокого в низкое. Он изолирует логические цепи измерения и защиты от высокого напряжения. Такой трансформатор питается от источника напряжения.
  2. Трансформатор тока снижает первичный ток до того показателя, чтобы он смог быть используем в цепях защиты и измерения. Питание трансформатора такого типа происходит от источника тока.

Определить коэффициент трансформации достаточно легко после изучения теоретической части процесса

Если коэффициент трансформации k, а напряжение на концах первичной и вторичной обмотке U1 и U2, соответственно, получим следующую формулу: k=U1/U2. При этом напряжение на вторичной обмотке определяется на холостом ходу. Эта формула действительна для трансформатора напряжения.

Делаем расчет: трансформатор имеет коэффициент трансформации 20

Для трансформатора тока получим следующую формулу, где для определения коэффициента трансформации берут отношение значений токов первичной I1 и вторичной I2 обмотки, расчет производится по следующей формуле k =I1/ I2.

Отметим:

  1. У силового трансформатора с двумя обмотками, которые расположены на едином стержне, коэффициент трансформации будет равен соотношению чисел витков на стержне.
  2. В трансформаторе с тремя фазами (трехфазном) коэффициенты трансформации могут быть различны для фазных и междуфазных напряжений.
  3. Коэффициент трансформации равен отношению высшего напряжения к низшему будет в двухобмоточном трансформаторе.

Для большей экономии покупатель все чаще покупает электронный счетчик, поскольку он относится к классу 2,0 точности, а индукционный – 2,5 класс. Это говорит о большей точности показаний, снятых с его помощью. Узнать, что это такое, как влияет на экономию и что показывает, можно у электриков. Считать в дальнейшем можно все самостоятельно. Ведь посчитать совсем не сложно. Для этого есть специальные формулы.

Выбор счетчика: коэффициент трансформации – это

Все мы знаем, что существует два типа электросчетчиков: электронные и индукционные. Электронный счетчик компактный и удобен при установке, также в нем отсутствует механика. Ток в нем проходит напрямую через полупроводники и микросхемы. Также есть электронные счётчики делятся на однофазные и двухфазные. При двухфазном учитываются дневное и ночное показатели, то есть два тарифа. Отметим, что ночное гораздо меньше дневного.

Поэтому многие потребители пользуются электрозатратной техникой преимущественно ночью, например, стиральной машиной, скороваркой и т.д.

Интерфейс достаточно понятный благодаря цифровой шкале. Такой тип оборудования имеет меньший гарантийный срок, хотя в нем нет движущихся частей, что повышает долговечность и надежность.

Индукционные электрические счетчики встречаются в каждом доме, поскольку они появились еще задолго до электронных:

  1. Они имеют механическую конструкцию с двумя катушками – для напряжения и тока.
  2. Поэтому он достаточно тяжелый и громоздкий.
  3. Магнитное поле, появляющееся во время работы электросчётчика, двигает эти катушки.

Затем приходят в движение диски и шкала со значениями. После этого на циферблате появляется объем затрачиваемой электроэнергии. Скорость работы всей системы в целом зависит от уровня напряжения. Недостаток прибора в том, что он не подходит для многотарифного учета.

При покупке счетчика следует проконсультироваться с продавцом, узнав обо всех нюансах использования выбранной модели

В расчетный период многие пользователи отмечают некоторые погрешности при сверке показаний общедомового счетчика и своих, но эта погрешность незначительна. Обычной средний срок службы индукционного электросчетчика примерно 15 лет.

Показатель: коэффициент трансформации счетчика

Для проверки класса электросчетчика и реального уровня электропотребления ведут определенные расчеты.

А именно:

  1. Снимают показания со счетчика и умножают на коэффициент трансформации, указанного общедомовым трансформатором.
  2. Например, показания счетчика равны 70 кВт*ч, а трансформатор понижает напряжение в 20 раз (коэфф. трансформации получается равен 20), то умножаем эти два показателя и получаем реальный расход электричества (70*20=1400 кВт*ч).
  3. Иногда появляется необходимость в определении коэффициента трансформации, чтобы определить значение уменьшенного электросчетчика трансформатором, поскольку на счетчике нет соответствующего идентификатора (Кт на приборе).

Для расчета используют специальный прибор, при этом одновременно на вторичной обмотке фиксируют величину электрического тока. Затем необходимо поделить значение (важно, что теперь оно получено от прохождения через вторую обмотку) первичного тока, который ранее подавался на первичную обмотку. В результате чего появится необходимое значение коэффициента трансформации.

Обычно в качестве измерительного прибора используют амперметра. На нем выставляется значение в 5 ампер для вторичного тока, то есть ток теперь будет измеряться в этих пределах. С помощью полученного расчета также определяют, к какому классу точности относится электросчетчик.

Что такое коэффициент трансформации (видео)

При подборе электросчетчика нужно обращать внимание на множество факторов, проверять технический паспорт, учитывать биоритмы потребителя и так далее. Проверить точность прибора поможет коэффициент трансформации, так как с его помощью определяют точность измерений и исключают погрешности.

Коэффициент трансформации счетчика электроэнергии – что это такое и как рассчитать?

Коэффициент трансформации счетчика электроэнергии (КТ) – это одна из технических величин, виляющих на точность показаний прибора учёта.

Показатель определяется эффективностью функционирования трансформаторной подстанции.

Разберем подробно данную величину.

Что такое коэффициент трансформации?

Такие электрические счётчики не имеют непосредственного соединения с электросетью дома, что обуславливается отсутствием возможности выполнить подключение высокого напряжения посредством традиционных приборов прямого включения.

Таким образом, чтобы предотвратить поломку счетчиков, требуется уменьшать мощностные показатели на подаваемое напряжение посредством трансформаторного стандартного оборудования. На выбор такого оборудования оказывает непосредственное влияние уровень необходимой нагрузки.

Коэффициент трансформации приборов учёта электрической энергии может варьироваться в зависимости от характеристик установленного оборудования. В результате приборы-счётчики для учета затрат электроэнергии, функционирующие с трансформаторами, фиксируют нагрузку, которая снижена в несколько десятков раз.

Как определить коэффициент трансформации: формула

Коэффициент трансформации счетчика электроэнергии указывает во сколько раз входные параметры напряжения или тока отличаются в меньшую или большую сторону от показателей на выходе.

При показателях, превышающих единицу, производится снижение, и, напротив, при показателях менее единицы, применяется устройство повышающего типа.

Различаются коэффициенты трансформации на напряжение или ток.

  • U1 и U2 – разница электрического напряжения на первичной и вторичной обмотке;
  • N1 и N2 – количество витков первичной и вторичной обмотки;
  • I2 и I1 – показатели силы тока в первичной и вторичной обмотке;
  • k – искомые показатели КТ.

Как правило, такие параметры коэффициента трансформации в обязательном порядке указываются в сопроводительной документации, которая прилагается к оборудованию. Также эти сведения можно узнать из обозначений на корпусе такого устройства.

Сложной является ситуация, при которой КТ нужно вычислить самостоятельно, по данным, полученным эмпирическим путем. В этом случае осуществляется пропуск тока сквозь первичную обмотку оборудования и замыкание на вторичной обмотке, после чего замеряется величина электрического тока, проходящего по вторичной обмотке.

Расчетный коэффициент учета

Чтобы уточнить реальный уровень потребления электрической энергии, требуется снять показания электросчётчика, после чего умножить их на КТ.

На практике КТ трансформатора, понижающего напряжение в домашних условиях, составляет 20 единиц, поэтому данные с прибора учёта нужно умножать именно на эту цифру, в результате чего и будет получен реальный расход электрической энергии.

Разновидности приборов учета электроэнергии

Счетчики являются многофункциональными устройствами для учета потребления, а также сохранения информации по потреблению электрической энергии. На сегодняшний день эксплуатируются три варианта приборов-счётчиков, предназначенных для учета расходуемой электрической энергии. К ним относятся индукционные, электронные и гибридные модели. Последний вариант наименее распространённый.

Механические или индукционные приборы учёта

Приборы такого типа состоят из двух катушек.

Первая катушка на напряжение ограничивает параметры переменного тока, преграждая помехи и образуя, в соответствии с напряжением, особый магнитный поток.

Вторая катушка на ток образует поток переменного типа.

К преимуществам механических моделей относятся высокая надежность и конструкционная простота, длительный эксплуатационный срок, независимости от перепадов напряжения и доступная стоимость. При выборе индукционных приборов нужно учитывать достаточно крупные габариты устройства.

Электронные приборы учёта

Модельный ряд электронных приборов отличается достаточно высокой стоимостью, которая вполне оправдана достойным качеством устройства, включая более высокий класс точности и способность функционировать в многотарифном режиме.

Принцип действия базируется на способе преобразования входных аналоговых сигналов в специальный цифровой код, расшифровываемый при помощи микроконтроллера.

Однофазный многофункциональный электронный счётчик электрической энергии DDS28U

Расшифрованные данные поступают на дисплей или так называемый оптический порт. Помимо высокой точности и многотарифной системы использования, к преимуществам можно отнести возможность ведения энергоучёта в двух направлениях, сохранение данных, возможность получения показаний в дистанционном режиме, а также долговечность и компактные размеры.

Гибридные приборы учёта

На сегодняшний день гибридные приборы учёта используются потребителями крайне редко. Такой промежуточный вариант счётчика электрической энергии имеет цифровой интерфейс, а измерительная часть устройства может быть представлена индукционным или электронным типом. Характерным является наличие механического вычислительного устройства.

Советы и рекомендации

Тем не менее, в условиях использования большого количества бытовых приборов с разными показателями мощности, рекомендуется отдавать предпочтение трехфазным счетчикам, что позволяет подключать энергоемкие устройства, которые рассчитаны на напряжение в 220 В и 380 В.

При выборе прибора нужно обязательно обращать внимание на расчётные показатели тока, а также класс точности, представленный наибольшей допустимой относительной погрешностью, выраженной в процентах.

Все вновь устанавливаемые трехфазные счетчики обязательно должны иметь пломбы государственной поверки, давность которых не превышает двенадцать месяцев. Срок давности пломбы на однофазном счетчике не может превышать два года.

Видео на тему

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector