Какова конструкция пускорегулирующих аппаратов для ламп ДРЛ?
Как устроены и работают пускорегулирующие аппараты люминесцентных ламп
Класс газоразрядных источников света, к которому относятся люминесцентные лампы, требует использования специальной аппаратуры, осуществляющей прохождение дугового разряда внутри стеклянного герметичного корпуса.
Устройство и принцип работы люминесцентной лампы
Ее форма изготавливается в виде трубки. Она может быть прямой, изогнутой или закрученной.
Поверхность стеклянной колбы внутри покрыта слоем люминофора, а на ее концах расположены вольфрамовые нити накала. Внутренний объем герметичен, заполнен инертным газом невысокого давления с парами ртути.
Свечение люминесцентной лампы происходит за счет создания и поддержания разряда электрической дуги в инертном газе между нитями накала, которые работают по принципу термоэлектронной эмиссии. Для ее протекания через вольфрамовую проволоку пропускается электрический ток, обеспечивающий нагрев металла.
Одновременно межу нитями накала прикладывается высокая разность потенциалов, обеспечивающая энергию протекания электрической дуги между ними. Пары ртути улучшают путь тока для нее в среде инертного газа. Слой люминофора преобразовывает оптические характеристики потока исходящих световых лучей.
Обеспечением прохождения электротехнических процессов внутри люминесцентной лампы занимается пускорегулирующая аппаратура . Ее сокращенно называют аббревиатурой ПРА.
Типы пускорегулирующих аппаратов
В зависимости от используемой элементной базы устройства ПРА могут быть выполнены двумя способами:
1. электромагнитной конструкцией;
2. электронным блоком.
Первые модели люминесцентных ламп работали исключительно за счет первого метода. Для этого применялись:
Электронные блоки появились не так давно. Их стали выпускать после массового, бурного развития предприятий, производящих современный ассортимент электронной базы на основе микропроцессорных технологий.
Электромагнитные пускорегулирующие аппараты
Принцип работы люминесцентной лампы с электромагнитным ПРА (ЭМПРА)
Стартерная схема запуска с подключением электромагнитного дросселя считается традиционной, классической. Благодаря относительной простоте и дешевизне она остается популярной, продолжает массово использоваться в схемах освещения.
После подачи сетевого питания на лампу напряжение через обмотку дросселя и вольфрамовые нити накала подводится к электродам стартера. Он создан в виде малогабаритной газоразрядной лампы.
Поступившее на ее электроды напряжение сети вызывает между ними тлеющий разряд, формирующий свечение инертного газа и нагрев его среды. Находящийся рядом биметаллический контакт воспринимает его, изгибается. изменяя свою форму, и замыкает промежуток между электродами.
В цепи электрической схемы образуется замкнутый контур и по нему начинает течь ток, нагревая нити накала люминесцентной лампы. Вокруг них образуется термоэлектронная эмиссия. Одновременно происходит разогрев паров ртути, находящихся внутри колбы.
Образовавшийся электрический ток примерно наполовину снижает напряжение, приложенное от сети на электроды стартера. Тлеющий между ними разряд снижается, а температура падает. Биметаллическая пластина уменьшает свой изгиб, разъединяя цепь между электродами. Ток через них прерывается, а внутри дросселя создается ЭДС самоиндукции. Она мгновенно создает кратковременный разряд в подключенной к ней схеме: между нитями накала люминесцентной лампы.
Его величина достигает нескольких киловольт. Ее хватает для создания пробоя среды инертного газа с подогретыми парами ртути и разогретыми нитями накала до состояния термоэлектронной эмиссии. Между концами лампы возникает электрическая дуга, являющаяся источником света.
В то же время величины напряжения на контактах стартера не хватает для пробоя его инертного слоя и повторного замыкания электродов биметаллической пластины. Они так и остаются в разомкнутом состоянии. Стартер в дальнейшей схеме работы участие не принимает.
После запуска свечения ток в цепи необходимо ограничивать. Иначе возможно перегорание элементов схемы. Эта функция тоже возложена на дроссель. Его индуктивное сопротивление ограничивает возрастание тока, предотвращает выход лампы из строя.
Схемы подключения электромагнитных ПРА
На основе изложенного выше принципа работы люминесцентных ламп для них создаются различные схемы подключения через пускорегулирующую аппаратуру.
Самой простой является включение дросселя и стартера на одну лампу.
При таком способе в схеме питания возникает дополнительное индуктивное сопротивление. Чтобы уменьшить реактивные потери мощности от его действия используют компенсацию за счет включения на входе схемы конденстора, сдвигающего угол вектора тока в противовположную сторону.
Если мощность дросселя позволяет использовать его для работы нескольких люминесцентных ламп, последние собирают в последовательные цепочки, а для запуска каждой используют индивидуальные стартеры.
Когда требуется компенсировать действие индуктивного сопротивления, то применяют тот же прием, что и раньше: подключают компенсационный конденсатор.
Вместо дросселя можно использовать в схеме автотрансформатор, который обладает тем же индуктивным сопротивлением и позволяет регулировать величину выходного напряжения. Компенсацию потерь активной мощности на реактивной составляющей осуществляют подключением конденсатора.
Автотрансформатор может использоваться для освещения несколькими лампами, подключаемыми по последовательной схеме.
При этом важно создавать резерв его мощности для обеспечения надежной работы.
Недостатки эксплуатации электромагнитных ПРА
Габариты дросселя требуют создания отдельного корпуса для пускорегулирующей аппаратуры, занимающего определенное пространство. При этом он издает хоть и небольшой, но посторонний шум.
Конструкция стартера не отличается надежностью. Периодически лампы гаснут из-за его неисправностей. При отказе стартера происходит фальстарт, когда можно визуально наблюдать несколько вспышек до начала стабильного горения. Это явление влияет на ресурс нитей накала.
Электромагнитные ПРА создают относительно высокие потери энергии, снижают КПД.
Умножители напряжения в схемах запуска люминесцентных ламп
Эта схема часто встречается в любительских разработках и не используется в промышленных образцах, хотя не требует сложной элементной базы, проста в изготовлении, работоспособна.
Принцип ее работы заключается в ступенчатом увеличении питающего напряжения сети до значительно бо́льших значений, вызывающих пробой изоляции среды инертного газа с парами ртути без их разогрева и обеспечения термоэлектронной эмиссии нитей накала.
Такое подключение позволяет использовать даже баллоны ламп с перегоревшими нитями накала. Для этого в их схеме с обеих сторон колбы просто шунтируют внешними перемычками.
Подобные схемы обладают повышенной опасностью к поражению человека электрическим током. Ее источником является выходящее с умножителя напряжение, которое можно довести до киловольта и больше.
Мы не рекомендуем эту схему к использованию и публикуем ее для разъяснения опасности создаваемых ею рисков. Заостряем на этом вопросе ваше внимание специально: сами не применяйте этот способ и предупреждайте своих коллег об этом главном недостатке.
Электронные пускорегулирующие аппараты
Особенности работы люминесцентной лампы с электронным ПРА (ЭПРА)
Все физические законы, происходящие внутри стеклянной колбы с инертным газом и парами ртути для образования разряда дуги и свечения остались без изменений в конструкциях ламп, управляемых электронными пускорегулирующими устройствами.
Поэтому алгоритмы работы ЭПРА остались теми же, что и у их электромагнитных аналогов. Просто старая элементная база заменена современной.
Это обеспечило не только высокую надежность пускорегулирующей аппаратуры, но и ее маленькие габариты, позволяющие устанавливать ее в любом подходящем месте, даже внутри цоколя обычной лампочки Е27, разработанного еще Эдисоном для ламп накаливания.
По этому принципу работают малогабаритные энергосберегающие светильники с люминесцентной трубкой сложной закрученной формы, которые по габаритам не превышают лампы накаливания и создаются для подключения к сети 220 через старые патроны.
В большинстве случаев для электриков, занимающихся эксплуатацией люминесцентных ламп, достаточно представлять простую схему подключения, выполненную с большим упрощением из нескольких составных частей.
Из электронного блока ЭПРА для эксплуатации выделяются:
входная цепь, подключаемая к сети питания 220 вольт;
две выходных цепи №1 и №2, присоединяемые к соответствующим нитям накала.
Обычно электронный блок выполняется с высокой степенью надежности, длительным ресурсом. На практике чаще всего у энергосберегающих ламп при эксплуатации происходит разгерметизация корпуса колбы по разным причинам. Из него сразу уходит инертный газ и пары ртути. Такая лампа уже не загорится, а электронный блок у нее остается в исправном состоянии.
Его можно использовать повторно, подключить на колбу соответствующей мощности. Для этого:
цоколь лампы аккуратно разбирают;
из него извлекают электронный блок ЭПРА;
помечают пару проводов, задействованных в схеме питания;
маркируют проводники выходных цепей на нити накала.
Дальше остается только переподключить схему электронного блока на целую, исправную колбу. Она будет работать дальше.
Устройство электромагнитных ПРА
Конструктивно электронный блок состоит из нескольких частей:
фильтра, устраняющего и блокирующего электромагнитные помехи, поступающие из питающей сети в схему или создаваемые электронным блоком при работе;
выпрямителя синусоидальных колебаний;
схемы коррекции мощности;
электронного балласта (аналог дросселя).
Электрическая схема инвертора работает на мощных полевых транзисторах и создается по одному из типовых принципов: мостовой или полумостовой схеме их включения.
В первом случае работает четыре ключа в каждом плече моста. Такие инверторы создаются для преобразования больших мощностей у осветительных систем в сотни ватт. Полумостовая схема содержит всего два ключа, обладает меньшим КПД, используется чаще.
Обе схемы управляются от специального электронного блока — микродрайвера.
Как работает электронная ПРА
Для обеспечения надежного свечения люминесцентной лампы алгоритмы ЭПРА разбиты на 3 технологических этапа:
1. подготовительный, связанный с первоначальным нагревом электродов с целью увеличения термоэлектронный эмиссии;
2. поджигание дуги подачей импульса высоковольтного напряжения;
3. обеспечение стабильного протекания дугового разряда.
Такая технология позволяет быстро включать лампу в работу даже при отрицательной температуре, обеспечивает мягкий запуск и выдачу минимально необходимого напряжения между нитями накала для хорошего свечения дуги.
Одна из простых принципиальных схем подключения электронного ПРА к люминесцентной лампе показана ниже.
Диодный мост на входе выпрямляет переменное напряжение. Его пульсации сглаживаются конденсатором С2. После него работает двухтактный инвертор, включенный по полумостовой схеме.
В его состав входят 2 n-p-n транзистора, создающие колебания высокой частоты, которые управляющими сигналами подаются в противофазе на обмотки W1 и W2 трехобмоточного тороидального в/ч трансформатора L1. Его оставшаяся обмотка W3 выдает высокое резонансное напряжение на люминесцентную лампу.
Таким образом, при включении питания до начала зажигания лампы в резонансном контуре создается максимальный ток, который обеспечивает нагрев обеих нитей накала.
Параллельно лампе подключен конденсатор. На его обкладках создается большое резонансное напряжение. Оно запускает электрическую дугу в среде инертных газов. Под ее действием обкладки конденсатора закорачиваются и резонанс напряжений прерывается.
Однако свечение лампы не прекращается. Она продолжает работать автоматически за счет оставшейся доли приложенной энергии. Индуктивное сопротивление преобразователя регулирует ток, проходящий через лампу, поддерживает его в оптимальном диапазоне.
Пускорегулирующая аппаратура
Пускорегулирующая аппаратура — специальные электротехнические устройства в газоразрядных источниках света и служат для розжига ламп, поддержания их горения и стабилизации тока в сети питания.
Нет в наличии товара
- Печать
Принцип действия пускорегулирующей аппаратуры
Для работы газоразрядных ламп всех типов (металлогалогенных, люминесцентных и пр.) необходимы специальные пускорегулирующие устройства для ламп, представляющие собой специальные электротехнические устройства, которые служат для розжига ламп, поддержания их горения и стабилизации тока в сети питания. Такого вида устройства называются ПРА — пускорегулирующий аппарат, иногда называемый так же дроссель для ламп. Балласт для ламп или дроссель для ламп может иметь определенные различия в конструкции, в зависимости от принадлежности источника света к тому или иному типу.
Существует два вида ПРА – электронный и электромагнитный пускорегулирующий аппарат (ЭПРА и ЭМПРА). Их качественно важным рабочим параметром является мощность потерь, которая вместе с мощностью ламп складывается в системную мощность.
Обычные электромагнитные ПРА (ЭМПРА) – простое индуктивное сопротивление, которое состоит из железного сердечника, обвитого медной проволокой. Использование такого омического сопротивления приводит к высокой потере мощности и к большому выделению тепла. Например, системная мощность работающей с ЭПРА 26-ваттной компактной люминесцентной лампы составляет 32 Вт, т. о. мощность потерь составляет 6 Вт (23%).
Различают следующие способы включения:
- Со стартером тлеющего разряда.
- Без стартера.
- ПРА с ограничением температуры.
Использование ЭМПРА со светильником дает следующие преимущества:
- Более быстрый и равномерный запуск лампы
- Отсутствие видимого мерцания лампы.
- Не сокращается время работы лампы.
- Высокий КПД.
- Высокая степень защиты от поражения током
- Коэффициент мощности – более 0,9 (обычный дроссель не больше 0,6)
Основным преимуществом ЭМПРА является их низкая стоимость. Существенным недостатком ЭМПРА является их существенные габариты и вес, особенно если речь идет о применении их с люминесцентными лампами. Также существуют и другие:
- Довольно большие потери мощности: в ПРА для маломощных люминесцентных ламп эти потери соизмеримы с мощностью самих ламп.
- На промышленной частоте тока (50 Гц) световой поток пульсирует с частотой 100 Гц. Глаз не замечает этих пульсаций, но через подсознание они отрицательно влияют на наш организм. Кроме того, пульсации светового потока создают так называемый «стробоскопический эффект», когда предметы, вращающиеся с частотой пульсаций или кратной ей, кажутся неподвижными. Это может приводить к травматизму в цехах, оснащённых станками с такой частотой вращения обрабатываемых деталей или инструмента.
- Световой поток ламп не поддаётся управлению, что несколько ограничивает возможности создания комфортных осветительных установок.
- Часто дроссели «гудят», то есть создают неприятные акустические шумы.
Для преодоления этих недостатков применительно к люминесцентным лампам наиболее радикальным средством оказалось питание ламп током повышенной частоты. Для этого в качестве балласта последовательно с лампой включают сложное электронное устройство, преобразующее напряжение сети в другое напряжение с частотой, как правило, несколько десятков кГц и одновременно обеспечивающее зажигание ламп. Такие устройства получили название «электронные пускорегулирующие аппараты» (сокращённо ЭПРА).
Электронные пускорегулирующие аппараты (ЭПРА) выполнены в виде электронного устройства для питания газоразрядных и люминесцентных ламп. Первые ЭПРА появились ещё в 60-х годах прошлого века, однако их триумфальное шествие началось только в конце 80-х – начале 90-х годов. В настоящее время в ряде стран (Швеция, Швейцария, Голландия, Австрия) объём производства ЭПРА соизмерим с объёмом производства электромагнитных аппаратов.
Использование ЭПРА дает следующие преимущества:
- Защита от повреждения или отсутствия лампы.
- Автоматическое отключение в случае перегорания лампы.
- Защита от перегрузки.
- Отсутствие стробоскопического эффекта.
- Быстрый запуск без мерцания.
- Высокий световой КПД — не менее 80%.
- Увеличенный срок службы ламп до 50%.
- Не требуется стартёр и компенсирующий конденсатор.
- Бесшумная работа.
- Незначительное тепловыделение и низкая мощность рассеивания.
- Наличие фильтра ЭМС.
Также уменьшается масса аппаратов и расход крайне дефицитных материалов – меди и электротехнической стали.
Кроме того, с внедрением ЭПРА появилась возможность создания систем управления освещением в помещениях, обеспечивающих наибольшую экономию электроэнергии и максимальный комфорт.
Электронные пускорегулирующие аппараты для разрядных ламп высокого давления
Главная > Курсовая работа >Физика
ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛАМП ТИПОВ ДРЛ, ДРИ И ДНаТ
Пускорегулирующие аппараты для ламп типа ДРЛ делятся на три группы:
1) балластные дроссели для четырехэлектродных ламп, которые зажигаются от сети промышленной частоты при включении*на фазное или линейное напряжение;
2) аппараты импульсного зажигания, состоящие из балластного дросселя и специального зажигающего устройства. Такие аппараты предназначены для работы с двух-электродными лампами, а также лампами типов ДРИ и ДНаТ;
3) аппараты мгновенного зажигания, выполненные по схемам автотрансформатора с рассеянием, в которых зажигание ламп происходит под действием повышенного синусоидального напряжения промышленной частоты. Такие аппараты применяют для зажигания ламп в условиях отрицательных температур вместо ПРА первой группы.
Основным элементом схем первых двух групп является балластный дроссель, аналогичный дросселям стартерных ПРА. Требования к его параметрам такие же, как к дросселям стартерных ПРА, за исключением требования к току предварительного нагрева электродов (пусковой ток), так как лампы высокого давления зажигаются с холодными электродами. Расшифровка условного обозначения типа ПРА для ламп высокого давления и стартерных ПРА аналогична, но после цифры, указывающей мощность лампы, приводится обозначение типа лампы ДРЛ, ДНаТ или ДРИ. Дроссели, предназначенные для включения ламп типа ДРЛ, нельзя применять для включения ламп типа ДНаТ, так как последние имеют напряжение горения на 30 40 В, ниже чем напряжение горения ламп ДРЛ.
Схемы с автотрансформатором применяют для ламп, у которых напряжение горения больше 0,7 номинального напряжения сети. Автотрансформаторные схемы включения газоразрядных ламп находят применение в сетях напряжением 100 110 В.
Лампы типа ДРИ мощностью 400 Вт включаются с дросселем от ламп типа ДРЛ и универсальным зажигающим устройством типа УИЗУ.
Для включения газоразрядных ламп могут быть использованы также резонансные схемы, аналогичные схемам для ЛЛ. Зажигание ламп высокого давления с холодными электродами, т. е. по схеме мгновенного зажигания, существенно облегчает возможность согласования пускового н рабочего режимов резонансного ПРА, в результате чего можно получить достаточно высокие значения напряжения холостого хода, в 2,5 3 раза превышающие напряжение питающей сети.
ЭЛЕКТРОННЫЙ ПУСКОРЕГУЛИРУЮЩИЙ АППАРАТ
Электронный пускорегулирующий аппарат (ЭПРА) обеспечивает работу трубчатых люминесцентных ламп со щадящими режимами пуска. ЭПРА с полумостовым инвертором разработан для управления стандартной лампой Philips TLD58W или лампами аналогичных типов. Схема оптимизирована для ламп мощностью 50 Вт при номинальном напряжении сети 230 В и частоте 50. 60 Гц. Щадящий режим пуска увеличивает срок службы лампы. Постоянство мощности лампы обеспечено автоматическим управлением. Предусмотрены защита от емкостного режима работы и защита от удаления лампы.
ЭПРА работоспособен в диапазоне напряжений сети 185. 265 В при частоте 50. 60 Гц. Автоматическое управление поддерживает мощность горения лампы в пределах 47,6. 50,3 Вт при изменении напряжения сети в пределах 200. 260 В. Одним из основных компонентов является высоковольтная ИМС UBA2021, предназначенная для управления, как компактными люминесцентными лампами, так и трубчатыми лампами. Микросхема UBA2021, включающая высоковольтный драйвер со схемой запуска, генератор и таймер, обеспечивает управление режимами пуска, подогрева, зажигания и горения лампы, а также защиту от емкостного режима и удаления лампы. UBA2021 управляет работой мощных полевых МОП-транзисторов PHX3N50E, являющихся ключами полумостового инвертора, который питается от сети с номинальным напряжением 230 В и частотой 50. 60 Гц. При этом обеспечивается необходимый сдвиг уровней питания полевых транзисторов, осуществляющий защиту от емкостного режима работы. Основными достоинствами этого изделия являются малое число компонентов и низкая стоимость, что достигнуто благодаря применению ИМС UBA2021, которая способна обеспечить максимальную гибкость разработки при минимальном числе периферийных элементов.
Блок-схема устройства приведена на рис.18, полная электрическая схема — на рис.19. Напряжение сети переменного тока преобразуется в питающее полумостовой инвертор напряжение постоянного тока с помощью мостового выпрямителя на четырех диодах и сглаживающего конденсатора. Помехоподавляющий сетевой фильтр (рис.18) препятствует проникновению помех в сеть. Полумостовой инвертор относится к группе высокочастотных резонансных преобразователей напряжения, которые удобны для управления газоразрядными лампами. Используемый принцип переключения двух мощных МОП-транзисторов при нулевом напряжении позволяет уменьшить потери на их переключение и обеспечивает высокий КПД аппарата.
Рисунок18 Блок схема устройства
После подачи сетевого напряжения люминесцентная лампа сначала подогревается. Это называется мягким пуском и обеспечивает надежную и долговечную работу лампы. Величина тока подогрева регулируется микросхемой UBA2021. Этот ток, проходящий через нити накала лампы, разогревает электроды лампы до температуры, обеспечивающей достаточную эмиссию электронов. Достаточный подогрев позволяет уменьшить напряжение зажигания лампы, что снижает ударные электрические нагрузки на элементы схемы. Автоматическое управление в значительной степени стабилизирует излучаемый лампой световой поток в широком диапазоне вариаций напряжения сети.
Рисунок 19 Полная электрическая схема устройства
После включения выпрямленное напряжение сети поступает на буферный конденсатор С4 через резистор R1 (рис.19), ограничивающий бросок тока. Конденсатор сглаживает пульсации напряжения с удвоенной частотой сети. Полученное высоковольтное напряжение U HV постоянного тока является питающим для полумостового инвертора, в состав силовых компонентов которого входят транзисторы VT1, VT2, катушка L1, конденсаторы С5, С6, С7 и лампа, подключаемая к разъемам Р2 и РЗ.
На этапе пуска ток от высоковольтного конденсатора С4 проходит через резистор R2, нить накала лампы, резистор R4, выводы 13 и 5 микросхемы UBA2021, соединенные между собой в период пуска внутренним ключом, и заряжает конденсаторы низковольтного питания С9, СЮ и С13. Как только напряжение питания Vs на С13 достигнет величины 5,5 В, происходит переключение UBA2021, в результате которого транзистор VT2 открывается, а транзистор VT1 запирается. Это позволяет зарядиться пусковому конденсатору С12 через внутреннюю цепь микросхемы. Напряжение питания Vs продолжает увеличиваться, и при Vs > 12 В схема начинает генерировать. Величина тока потребления ИМС внутренне фиксируется на уровне порядка 14 мА. Далее происходит переход к этапу подогрева.
При отсутствии лампы пуск автоматически блокируется, т.к. в этом случае оказывается разорванной цепь зарядки пускового конденсатора.
На этапе подогрева МОП-транзисторы VT1 и VT2 поочередно переводятся в проводящее состояние. Это генерирует переменное напряжение прямоугольной формы относительно средней точки полумоста с амплитудой VHV. Стартовая частота колебаний составляет 98 кГц. В этих условиях цепь, состоящая из С8, VD5, VD6, С9 и СЮ, оказывается способной выполнить функцию источника низковольтного питания, которая во время пуска обеспечивалась током через вывод 13 ИМС.
В течение интервала времени, примерно равного 1,8 с (время подогрева t PRE ), продолжительность которого определяется номиналами С17 и R7, система находится в режиме подогрева, когда через нити накала лампы проходит ток контролируемой величины. Это позволяет оптимальным образом разогреть оба электрода лампы. Нагретые электроды эмиттируют в лампу большое число электронов, и в этом состоянии для ее зажигания требуются значительно меньшие напряжения, что минимизирует ударные электрические нагрузки на элементы схемы и лампу в момент зажигания. Подогрев электродов весьма важен для обеспечения большого срока службы лампы.
После возникновения генерации небольшой переменный ток начинает протекать от средней точки полумоста через нити накала лампы, L1 и С7. Частота колебаний постепенно снижается, что приводит к соответствующему росту величины тока. Скорость снижения частоты определяется емкостью конденсатора С14 и внутренним источником тока ИМС. Частота прекращает падать, как только будет достигнуто определенное значение напряжения переменного тока на резисторах R5 и R6, являющихся датчиками тока подогрева. Это происходит примерно через 3 мс после включения. UBA2021 стабилизирует ток через нити накала, отслеживая величину падения напряжения на R5 и R6.
В течение всего этапа подогрева частота работы полумостового инвертора остается выше резонансной частоты цепочки L1, С7 (55,6 кГц), и в силу этого напряжение на С7 еще мало для зажигания лампы. Весьма важно удержать это напряжение достаточно малым: ведь преждевременное, так называемое холодное, зажигание приводит к потемнению концов лампы.
Величина индуктивности балластной катушки L1 определяется необходимым током через лампу, емкостью конденсатора поджига С7 и рабочей частотой в режиме горения. Минимальная величина емкости С7 определяется индуктивностью L1, величиной не приводящего к зажиганию напряжения на лампе при данном токе подогрева и минимальным напряжением сети. В результате оптимальным для подогрева оказывается значение емкости С7, равное 8,2 нФ.
После окончания этапа подогрева UBA2021 возобновляет дальнейшее снижение частоты переключений полумоста вплоть до низшей частоты f н (39 кГц). Однако теперь понижение частоты осуществляется гораздо медленнее, чем это происходило в стадии подогрева. Частота переключений смещается к резонансной частоте последовательной цепочки, состоящей из индуктивности L1 и суммарной емкости конденсатора С7 и электродов лампы (55,6 кГц), причем сопротивления блокирующих постоянный ток конденсаторов С5 и С6 достаточно малы.
Максимальная величина напряжения зажигания в наихудшем случае (когда и светильник, и схема ЭПРА подключены к защитному заземлению сети) для лампы TLD58W при низких температурах составляет примерно 600 В.
Сочетание балластной катушки индуктивности L1 и конденсатора поджига С7 подобрано таким образом, чтобы напряжение на лампе могло превысить эти необходимые для надежного зажигания 600 В. Величина напряжения зажигания определяет максимальное значение емкости С7 при заданной индуктивности L1, выбранной исходя из нижней частоты f н UBA2021. Нижняя частота f н задается величинами R7, С15 и С16. Максимально возможная продолжительность этапа зажигания T IGN равна 1,7 с (15/16-ых от T PRE ), она устанавливается подбором С17 и R7.
В предположении, что лампа зажглась в ходе понижения частоты, частота уменьшается до минимального значения f н . UBA2021 может осуществить переход к этапу горения двумя путями: 1 — при снижении частоты до f н , и 2 — если частота f н не достигнута, но переход происходит по истечении максимально возможной продолжительности этапа зажигания T IGN .
На этапе горения частота колебаний в схеме обычно снижается до f н (39 кГц), которая может использоваться в качестве номинальной рабочей частоты. Однако, в силу применения в ЭПРА автоматического управления, частота колебаний зависит от величины тока, протекающего через вывод 13 (вывод RHV) ИМС UBA2021. Автоматическое управление начинает функционировать после достижения f н .
Во время этапа пуска конденсаторы низковольтного питания С9, С10 и С13 заряжаются током, протекающим от высоковольтного конденсатора С4 через R2, нить накала лампы, R4 и внутренне соединенные выводы 13 и 5 UBA2021. На этапе горения происходит перекоммутация. Вместо вывода 5 к выводу 13 оказывается подключенным вывод 8. Теперь ток, протекающий через резисторы R2 и R4, используется в качестве информационного параметра в системе автоматического управления частотой переключений силового инвертора, так как сила этого тока пропорциональна уровню выпрямленного напряжения сети. Пульсации с удвоенной частотой сети (100. 120 Гц) фильтруются конденсатором С17. В результате излучаемый лампой световой поток остается почти постоянным при изменении напряжения сети в пределах от 200 до 260 В.
ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛАМП ТИПОВ ДРЛ, ДРИ И ДНаТ
Пускорегулирующие аппараты для ламп типа ДРЛ делятся на три группы:
1) балластные дроссели для четырехэлектродных ламп, которые зажигаются от сети промышленной частоты при включении*на фазное или линейное напряжение;
2) аппараты импульсного зажигания, состоящие из балластного дросселя и специального зажигающего устройства. Такие аппараты предназначены для работы с двух-электродными лампами, а также лампами типов ДРИ и ДНаТ;
3) аппараты мгновенного зажигания, выполненные по схемам автотрансформатора с рассеянием, в которых зажигание ламп происходит под действием повышенного синусоидального напряжения промышленной частоты. Такие аппараты применяют для зажигания ламп в условиях отрицательных температур вместо ПРА первой группы.
Основным элементом схем первых двух групп является балластный дроссель, аналогичный дросселям стартерных ПРА. Требования к его параметрам такие же, как к дросселям стартерных ПРА, за исключением требования к току предварительного нагрева электродов (пусковой ток), так как лампы высокого давления зажигаются с холодными электродами. Расшифровка условного обозначения типа ПРА для ламп высокого давления и стартерных ПРА аналогична, но после цифры, указывающей мощность лампы, приводится обозначение типа лампы ДРЛ, ДНаТ или ДРИ. Дроссели, предназначенные для включения ламп типа ДРЛ, нельзя применять для включения ламп типа ДНаТ, так как последние имеют напряжение горения на 3040 В, ниже чем напряжение горения ламп ДРЛ.
Схемы с автотрансформатором применяют для ламп, у которых напряжение горения больше 0,7 номинального напряжения сети. Автотрансформаторные схемы включения газоразрядных ламп находят применение в сетях напряжением 100110 В.
Лампы типа ДРИ мощностью 400 Вт включаются с дросселем от ламп типа ДРЛ и универсальным зажигающим устройством типа УИЗУ.
Для включения газоразрядных ламп могут быть использованы также резонансные схемы, аналогичные схемам для ЛЛ. Зажигание ламп высокого давления с холодными электродами, т. е. по схеме мгновенного зажигания, существенно облегчает возможность согласования пускового н рабочего режимов резонансного ПРА, в результате чего можно получить достаточно высокие значения напряжения холостого хода, в 2,53 раза превышающие напряжение питающей сети.
ЭЛЕКТРОННЫЙ ПУСКОРЕГУЛИРУЮЩИЙ АППАРАТ
Электронный пускорегулирующий аппарат (ЭПРА) обеспечивает работу трубчатых люминесцентных ламп со щадящими режимами пуска. ЭПРА с полумостовым инвертором разработан для управления стандартной лампой Philips TLD58W или лампами аналогичных типов. Схема оптимизирована для ламп мощностью 50 Вт при номинальном напряжении сети 230 В и частоте 50. 60 Гц. Щадящий режим пуска увеличивает срок службы лампы. Постоянство мощности лампы обеспечено автоматическим управлением. Предусмотрены защита от емкостного режима работы и защита от удаления лампы.
ЭПРА работоспособен в диапазоне напряжений сети 185. 265 В при частоте 50. 60 Гц. Автоматическое управление поддерживает мощность горения лампы в пределах 47,6. 50,3 Вт при изменении напряжения сети в пределах 200. 260 В. Одним из основных компонентов является высоковольтная ИМС UBA2021, предназначенная для управления, как компактными люминесцентными лампами, так и трубчатыми лампами. Микросхема UBA2021, включающая высоковольтный драйвер со схемой запуска, генератор и таймер, обеспечивает управление режимами пуска, подогрева, зажигания и горения лампы, а также защиту от емкостного режима и удаления лампы. UBA2021 управляет работой мощных полевых МОП-транзисторов PHX3N50E, являющихся ключами полумостового инвертора, который питается от сети с номинальным напряжением 230 В и частотой 50. 60 Гц. При этом обеспечивается необходимый сдвиг уровней питания полевых транзисторов, осуществляющий защиту от емкостного режима работы. Основными достоинствами этого изделия являются малое число компонентов и низкая стоимость, что достигнуто благодаря применению ИМС UBA2021, которая способна обеспечить максимальную гибкость разработки при минимальном числе периферийных элементов.
Блок-схема устройства приведена на рис.18, полная электрическая схема — на рис.19. Напряжение сети переменного тока преобразуется в питающее полумостовой инвертор напряжение постоянного тока с помощью мостового выпрямителя на четырех диодах и сглаживающего конденсатора. Помехоподавляющий сетевой фильтр (рис.18) препятствует проникновению помех в сеть. Полумостовой инвертор относится к группе высокочастотных резонансных преобразователей напряжения, которые удобны для управления газоразрядными лампами. Используемый принцип переключения двух мощных МОП-транзисторов при нулевом напряжении позволяет уменьшить потери на их переключение и обеспечивает высокий КПД аппарата.
Рисунок18 Блок схема устройства
После подачи сетевого напряжения люминесцентная лампа сначала подогревается. Это называется мягким пуском и обеспечивает надежную и долговечную работу лампы. Величина тока подогрева регулируется микросхемой UBA2021. Этот ток, проходящий через нити накала лампы, разогревает электроды лампы до температуры, обеспечивающей достаточную эмиссию электронов. Достаточный подогрев позволяет уменьшить напряжение зажигания лампы, что снижает ударные электрические нагрузки на элементы схемы. Автоматическое управление в значительной степени стабилизирует излучаемый лампой световой поток в широком диапазоне вариаций напряжения сети.
Рисунок 19 Полная электрическая схема устройства
После включения выпрямленное напряжение сети поступает на буферный конденсатор С4 через резистор R1 (рис.19), ограничивающий бросок тока. Конденсатор сглаживает пульсации напряжения с удвоенной частотой сети. Полученное высоковольтное напряжение UHV постоянного тока является питающим для полумостового инвертора, в состав силовых компонентов которого входят транзисторы VT1, VT2, катушка L1, конденсаторы С5, С6, С7 и лампа, подключаемая к разъемам Р2 и РЗ.
На этапе пуска ток от высоковольтного конденсатора С4 проходит через резистор R2, нить накала лампы, резистор R4, выводы 13 и 5 микросхемы UBA2021, соединенные между собой в период пуска внутренним ключом, и заряжает конденсаторы низковольтного питания С9, СЮ и С13. Как только напряжение питания Vs на С13 достигнет величины 5,5 В, происходит переключение UBA2021, в результате которого транзистор VT2 открывается, а транзистор VT1 запирается. Это позволяет зарядиться пусковому конденсатору С12 через внутреннюю цепь микросхемы. Напряжение питания Vs продолжает увеличиваться, и при Vs > 12 В схема начинает генерировать. Величина тока потребления ИМС внутренне фиксируется на уровне порядка 14 мА. Далее происходит переход к этапу подогрева.
При отсутствии лампы пуск автоматически блокируется, т.к. в этом случае оказывается разорванной цепь зарядки пускового конденсатора.
На этапе подогрева МОП-транзисторы VT1 и VT2 поочередно переводятся в проводящее состояние. Это генерирует переменное напряжение прямоугольной формы относительно средней точки полумоста с амплитудой VHV. Стартовая частота колебаний составляет 98 кГц. В этих условиях цепь, состоящая из С8, VD5, VD6, С9 и СЮ, оказывается способной выполнить функцию источника низковольтного питания, которая во время пуска обеспечивалась током через вывод 13 ИМС.
В течение интервала времени, примерно равного 1,8 с (время подогрева tPRE), продолжительность которого определяется номиналами С17 и R7, система находится в режиме подогрева, когда через нити накала лампы проходит ток контролируемой величины. Это позволяет оптимальным образом разогреть оба электрода лампы. Нагретые электроды эмиттируют в лампу большое число электронов, и в этом состоянии для ее зажигания требуются значительно меньшие напряжения, что минимизирует ударные электрические нагрузки на элементы схемы и лампу в момент зажигания. Подогрев электродов весьма важен для обеспечения большого срока службы лампы.
После возникновения генерации небольшой переменный ток начинает протекать от средней точки полумоста через нити накала лампы, L1 и С7. Частота колебаний постепенно снижается, что приводит к соответствующему росту величины тока. Скорость снижения частоты определяется емкостью конденсатора С14 и внутренним источником тока ИМС. Частота прекращает падать, как только будет достигнуто определенное значение напряжения переменного тока на резисторах R5 и R6, являющихся датчиками тока подогрева. Это происходит примерно через 3 мс после включения. UBA2021 стабилизирует ток через нити накала, отслеживая величину падения напряжения на R5 и R6.
В течение всего этапа подогрева частота работы полумостового инвертора остается выше резонансной частоты цепочки L1, С7 (55,6 кГц), и в силу этого напряжение на С7 еще мало для зажигания лампы. Весьма важно удержать это напряжение достаточно малым: ведь преждевременное, так называемое холодное, зажигание приводит к потемнению концов лампы.
Величина индуктивности балластной катушки L1 определяется необходимым током через лампу, емкостью конденсатора поджига С7 и рабочей частотой в режиме горения. Минимальная величина емкости С7 определяется индуктивностью L1, величиной не приводящего к зажиганию напряжения на лампе при данном токе подогрева и минимальным напряжением сети. В результате оптимальным для подогрева оказывается значение емкости С7, равное 8,2 нФ.
После окончания этапа подогрева UBA2021 возобновляет дальнейшее снижение частоты переключений полумоста вплоть до низшей частоты fн (39 кГц). Однако теперь понижение частоты осуществляется гораздо медленнее, чем это происходило в стадии подогрева. Частота переключений смещается к резонансной частоте последовательной цепочки, состоящей из индуктивности L1 и суммарной емкости конденсатора С7 и электродов лампы (55,6 кГц), причем сопротивления блокирующих постоянный ток конденсаторов С5 и С6 достаточно малы.
Максимальная величина напряжения зажигания в наихудшем случае (когда и светильник, и схема ЭПРА подключены к защитному заземлению сети) для лампы TLD58W при низких температурах составляет примерно 600 В.
Сочетание балластной катушки индуктивности L1 и конденсатора поджига С7 подобрано таким образом, чтобы напряжение на лампе могло превысить эти необходимые для надежного зажигания 600 В. Величина напряжения зажигания определяет максимальное значение емкости С7 при заданной индуктивности L1, выбранной исходя из нижней частоты fн UBA2021. Нижняя частота fн задается величинами R7, С15 и С16. Максимально возможная продолжительность этапа зажигания TIGN равна 1,7 с (15/16-ых от TPRE), она устанавливается подбором С17 и R7.
В предположении, что лампа зажглась в ходе понижения частоты, частота уменьшается до минимального значения fн. UBA2021 может осуществить переход к этапу горения двумя путями: 1 — при снижении частоты до fн, и 2 — если частота fн не достигнута, но переход происходит по истечении максимально возможной продолжительности этапа зажигания TIGN.
На этапе горения частота колебаний в схеме обычно снижается до fн (39 кГц), которая может использоваться в качестве номинальной рабочей частоты. Однако, в силу применения в ЭПРА автоматического управления, частота колебаний зависит от величины тока, протекающего через вывод 13 (вывод RHV) ИМС UBA2021. Автоматическое управление начинает функционировать после достижения fн.
Во время этапа пуска конденсаторы низковольтного питания С9, С10 и С13 заряжаются током, протекающим от высоковольтного конденсатора С4 через R2, нить накала лампы, R4 и внутренне соединенные выводы 13 и 5 UBA2021. На этапе горения происходит перекоммутация. Вместо вывода 5 к выводу 13 оказывается подключенным вывод 8. Теперь ток, протекающий через резисторы R2 и R4, используется в качестве информационного параметра в системе автоматического управления частотой переключений силового инвертора, так как сила этого тока пропорциональна уровню выпрямленного напряжения сети. Пульсации с удвоенной частотой сети (100. 120 Гц) фильтруются конденсатором С17. В результате излучаемый лампой световой поток остается почти постоянным при изменении напряжения сети в пределах от 200 до 260 В.
Пускорегулирующая аппаратура газоразрядных ламп. Технические характеристики, маркировка, обозначение, виды.
3. Пускорегулирующая аппаратура газоразрядных ламп
Почти все газоразрядные лампы для зажигания и устойчивой работы требуют пускорегулирующих аппаратов (ПРА).
Их особенности учитываются классификацией, согласно которой полное обозначение ПРА строится по схеме:
1 — число ламп обслуживаемых ПРА;
2 — основная характеристика аппаратов: ДБ — дроссель баластный, УБ — стартерный аппарат, АБ — бестартерный аппарат быстрого зажигания, МБ — то же мгновенного зажигания;
3 — буква И — для индуктивных, Е — емкостных, К — компенсированных аппаратов;
4 — мощность и, при необходимости, символ лампы (числитель) и напряжение сети (знаменатель);
5 — наличие (буква А) или отсутствие (не обозначается) сдвига фаз между токами лампы ламп многолампового аппарата;
6 — исполнение: встроенное в светильник или кожух (В) или независимое
7 — уровень шума: нормальный (не обозначается), пониженный (П), особо
8 — условный номер разработки.
Компенсированные ПРА для четного числа параллельно включенных ламп имеют cosφ≥0,92, у остальных компенсированных ПРА cosφ≥0,85. Коэффициент мощности некомпенсированных ПРА обычно в пределах 0,5—0,6.
В схемах УБ стартер при включении кратковременно замыкает свои контакты для начального подогрева электродов, после же зажигания лампы он бездействует. В схемах АБ накал электродов достигается напряжением, подаваемым от отдельных витков трансформатора.
В схемах УБ потери мощности ПРА составляют обычно 20—25% мощности ламп, в схемах АБ — примерно 30—35%.
Выпуск светильников с некомпенсированными ПРА запрещен. В случае использования таких ПРА для повышения коэффициента мощности применяются дополнительные конденсаторы емкостью 3,6—4 мкф для ламп 30—40 Вт и около 6 мкф для ламп 65—80 Вт.
Выбор ПРА имеет особое значение с точки зрения ограничения пульсаций суммарного потока ламп в светильнике или ином устройстве. Это ограничение достигается применением двухили многоламповых аппаратов со сдвигом фаз между токами отдельных ламп, совместным применением аппаратов «И» и «Е» или применение трехфазных ПРА.
3.1. Электронные трансформаторы ТЭ-60, 105, 150
Предназначены для преобразования напряжения сети (220 В) и питания галогенных ламп мощностью от 10 до 150 Вт.
Электронные трансформаторы серии ТЭ отличает компактность, небольшой вес и высокая надежность.
· обеспечение полного ресурса работы галогенной лампы;
· температурная защита от внутреннего и наружного перегрева;
· самовосстанавливающаяся электронная защита от перепадов и скачков напряжения;
· совместимость с любыми типами галогенных ламп импортного и отечественного производства;
· отсутствие шума при работе;
Таблица 3.1.1. Техническая характеристика электронных трансформаторов ТЭ-60, 105, 150
Онлайн журнал электрика
Статьи по электроремонту и электромонтажу
- Справочник электрика
- Бытовые электроприборы
- Библиотека электрика
- Инструмент электрика
- Квалификационные характеристики
- Книги электрика
- Полезные советы электрику
- Электричество для чайников
- Справочник электромонтажника
- КИП и А
- Полезная информация
- Полезные советы
- Пусконаладочные работы
- Основы электротехники
- Провода и кабели
- Программа профессионального обучения
- Ремонт в доме
- Экономия электроэнергии
- Учёт электроэнергии
- Электрика на производстве
- Ремонт электрооборудования
- Трансформаторы и электрические машины
- Уроки электротехники
- Электрические аппараты
- Эксплуатация электрооборудования
- Электромонтажные работы
- Электрические схемы
- Электрические измерения
- Электрическое освещение
- Электробезопасность
- Электроснабжение
- Электротехнические материалы
- Электротехнические устройства
- Электротехнологические установки
Конструкция пускорегулирующих аппаратов для люминесцентных ламп
Электрические пускорегулирующие аппараты для люминесцентных ламп
Стартерные аппараты. Конструкция и технические характеристики ПРА должны соответствовать требованиям ГОСТ 10237-62. Согласно эталону ПРА называют устройствами балластными (УБ). зависимо от наличия и нрава сдвига фаз меж током и напряжением при включении люминесцентной лампы с данным УБ различают:
1) УБИ — устройства балластные индуктивные, потребляющие из сети ток, отстающий по фазе от напряжения;
2) УБЕ — устройства балластные емкостные, потребляющие из сети ток, опережающий по фазе напряжение;
3) УБК — устройства балластные компенсированные, создающие коэффициент мощности, близкий к единице.
В двух- и многоламповых ПРА токи отдельных ламп могут не иметь сдвига по фазе, или иметь его. При наличии сдвига по фазе меж токами отдельных ламп в обозначение аппарата вводится буквенное обозначение— А.
По конструктивному выполнению ПРА делятся на независящие (Н), имеющие особые защитные кожухи, дозволяющие их устанавливать вне осветительной арматуры, и интегрированные (В), предназначенные только для размещения снутри осветительной арматуры либо в особых защитных коробах.
Электрические ПРА (пускорегулирующие аппараты)
При работе УБ на переменном токе они делают шум, обусловленный перемагничиванием сердечника дросселя и связанной с ним вибрацией пластинок, из которых собран сердечник, в такт с конфигурацией магнитного поля. Вибрация пластинок делает шум низкого тона. Этот шум усиливается за счет вибрации кожуха УБ и всей конструкции осветительного прибора. Не считая того, из-за преломления формы кривых тока и напряжения на лампе возникает стрекочущий шум высочайшего тона. По создаваемым УБ уровням шума и радиопомехам различают:
1) устройства с обычным уровнем шума и радиопомех, созданные для установки в промышленных помещениях;
2) устройства с пониженным уровнем шума и радиопомех (П), созданные для установки в административно-служебных и жилых помещениях.
Пример обозначения типа аппарата. Двухламповое компенсирование, балластное устройство для ламп мощностью 40 вт, для включения в однофазовую сеть 220 в, со сдвигом фаз меж токами ламп, встроенного исполнения, с пониженным уровнем шума и радиопомех 2УБК-40/220-АВП.
Потому что в питающих осветительные установки сетях вероятны колебания напряжения в границах ±10% 80 номинального напряжения, го проверку технических характеристик ПРА ведут при 2-ух значениях напряжения: 0,9 и 1,1 номинального. Главные технические требования, которым должны отвечать проверяемые ПРА в этих критериях; приведены в табл. 8.
Напряжение холостого хода на зажимах
лампы (амплитудное значение) менее, а
Ток пускового режима, а
- Если балластное устройство создано для нескольких ламп, то требования, обозначенные в столбцах 2—5, должны производиться для каждой лампы и стартера независимо от состояния других ламп и стартеров.
- Для балластных устройств с трансформацией напряжения предельное значение утрат возрастает в 1,5 раза.
- Максимально допустимые превышения температуры оэмотки УБ в рабочем режиме, сделанной из проводов с изоляцией класса А, 60″ С; при наличии межслоевой изоляции и пропитки — 70° С; сделанные из проводов с изоляцией класса Е — 75° С; при наличии межслоевой изоляции и пропитки — 85° С.
- Максимально допустимое превышение температуры поверхности У Б 60° С.
- В аварийном режиме для этих же частей УБ максимально допустимые превышения температуры будут соответственно: 120, 125, 130, 135 и 100° С.
Аппараты пускорегулирующие для люминесцентных ламп 80 Вт
Принципиальным показателем работоспособности УБ является температура, которую он имеет в рабочем и аварийном режимах. Допустимые пределы температур в этих режимах зависимо от используемых для производства изоляционных материалов указаны в табл. 8. Для стартерного аппарата аварийный режим появляется тогда, когда в одной из веток УБ закорачивается стартер (свариваются его электроды). В данном случае такая ветвь будет долгое время работать в пусковом режиме и через балласт будет проходить пусковой ток, вызывающий его перегрев. Беря во внимание возможность увеличения напряжения в сети, проверку перегрева УБ в рабочем режиме создают при 1,05, а в аварийном режиме — 1,1 номинального напряжения.
Эталоном регламентируется коэффициент мощности УБК, состоящего из равного числа опережающих и отстающих веток, который должен быть более 0,92. Для всех других типов УБК коэффициент мощности должен быть не ниже 0,85.
Не считая перечисленных требований, определяющих технические характеристики балластных устройств, к ним предъявляются также требования, вытекающие из необходимости обеспечить безопасность и надежность работы балластов. К таким требованиям относятся величина сопротивления изоляции электронных цепей УБ, их электронная крепкость, механическая крепкость, а также допустимые расстояния меж токоведущими и ней токоведущими деталями.
Электрические пускорегулирующие аппараты 2К36/220
Бесстартерные аппараты..
Буквенное обозначение типов бесстартерных аппаратов осуществляется аналогично тому, как это принято для стартерных ПРА. К примеру, аппарат бесстартерный, индуктивный, для включения одной лампы мощностью 40 вт в однофазовую сеть 220 в, встроенного выполнения, с пониженным уровнем шума и радиопомех:; 1АБИ-40/220-ВП.
Главные технические требования, предъявляемые к бесстартерным ПРА, приведены в табл. 9.
Главные технические требования, предъявляемые к бесстартерным ПРА
Лампа ДРЛ 125,250,400,700 расшифровка и технические характеристики
Лампы ДРЛ.
Лампа ДРЛ является электрическим газоразрядным светотехническим устройством для искусственного освещения. Аббревиатура расшифровывается – Дуговые Ртутные Лампы. Термин «ртутная лампа» или «РЛ» — общепризнанный. Он используется в технической документации.
- Д – дуга.
- Р – ртуть.
- Л – люминофор (источник света).
Физическим принципом работы является электрический разряд в ртутных парах.
При маркировке присутствует еще и цифра, обозначающая мощность. К примеру, ДРЛ-250 – 250 Ватт, Дуговая Ртутная Лампа.
В СССР, в России существуют регламентирующие документы на изготовление ртутных осветителей ГОСТ 27682-88 и 53074-2008.
Устройство дуговой ртутной лампы
Первые горелки, которые применялись в этом типе световых источников имели 2 электрода, это требовало наличия дополнительного устройства, которое генерирует мощные импульсы для зажигания дуги. Напряжения горения ламп ниже, чем напряжение запуска. Первым устройством было ПУРЛ-220 – Пусковое Устройство Ртутных Ламп. 220 – это рабочее напряжение в вольтах. ПУРЛ-220 было недолговечным, так как базировалось на газовом разряднике. В семидесятые годы двухэлектродные лампы были сняты с производства. На смену пришли горелки с четырьмя электродами. Им не требовалось внешнего устройства для запуска. Запуск происходит намного проще.
1 – основной электрод.
2 — поджигающий электрод.
3 – выводы электродов из горелки.
5 – резистор (сопротивление).
В основе работы лежит два процесса:
- Электрическая дуга между электродами.
- Процесс люминесценции.
Внешний корпус изготавливают из специального жаропрочного стекла. Из колбы – внешнего корпуса откачан воздух. Вместо него закачан азот, либо инертный газ. Его предназначение – предотвращение теплообмена между горелкой и колбой. Тем не менее температура баллона может достигать 120 градусов. Цоколь предназначен для фиксации в патроне подключения. Внутренняя часть колбы покрыта изнутри люминофорным слоем. Люминофор – вещество, которое способно светиться в видимом нами спектре при облучении ультрафиолетом, либо при бомбардировке электронами. В случае с ДРЛ лампами – ультрафиолетовым излучением. Светящимся телом является электрическая дуга между электродами. Из-за наличия люминофорного покрытия колба непрозрачная.
В момент, когда лампа не подключена и холодная, ртуть может быть либо в виде шарика, может быть в виде тонкого слоя на стенках горелки.
Горелка представляет собой трубку из кварцевого стекла (либо специальной тугоплавкой прозрачной керамики), так как оно термостойкое и пропускает ультрафиолетовое излучение. Внутри находится строго дозированные порции инертного газа. Ультрафиолет вызывает свечение люминофорного слоя. Это самая главная часть — излучатель.
Резисторы необходимы для ограничения пусковых токов.
Виды ламп ДРЛ
Этот тип осветителей классифицируется по давлению паров внутри горелки:
- Низкого давления — РЛНД, не более 100 Па.
- Высокого давления — РЛВД, около 100 кПа.
- Сверхвысокого давления — РЛСВД, около 1МПа.
У ДРЛ есть несколько разновидностей:
- ДPИ – Дуговая Ртутная с излучающими добавками. Разница только в примененных материалах и наполнении газом.
- ДРИЗ – ДРИ с добавлением зеркального слоя.
- ДРШ – Дуговая Ртутная Шаровая.
- ДРT – Дуговая Ртутная трубчатая.
- ПРК – Прямая Ртутно-Кварцевая.
Западная маркировка отличается от российской. Этот тип маркируется как QE (если следовать ILCOS – общепринятой международной маркировке), по дальнейшей части можно узнать производителя:
Принцип работы и схемы подключения ДРЛ
Схема подключения двухэлектродной ДРЛ в статье не рассматривается, так как этот тип ламп морально устарел и более не производится.
На принципиальной схеме изображены:
C – конденсатор (не является обязательным элементом).
LL – дроссель (катушка индуктивности).
FU – плавкий предохранитель.
При подаче напряжения, происходит ионизация газа между парами основных и поджигающих электродов. Так как они расположены в непосредственной близости, то ионизация газа происходит легко между ними. После ионизации газа происходит пробой между основными электродами – образуется дуговой разряд. Свет от самого разряда имеет голубой, либо фиолетовый оттенок.
Сам люминофор дает красноватый оттенок, таким образом, происходит смешивание основных цветов и синтезируется холодный белый свет. Видимый оттенок может незначительно меняться в зависимости от приложенного напряжения.
Разряд в горелке набирает яркость в течение семи-восьми минут. Это связано с тем, что изначально ртуть находится в виде шарика в жидком состоянии. При росте температуры происходит постепенное испарение ртути и разряд улучшается. Как только жидкий металл полностью перейдет в состояние пара, яркость достигнет максимума. При этом повышается и давление. Максимальная яркость достигается за десять-пятнадцать минут. Температура окружающей среды влияет на время выхода источника света на штатный режим.
Дроссель необходим, он является простейшим ПРА – пускорегулирующим аппаратом. Также он ограничивает ток, проходящий через электроды. Если ДРЛ-лампу подключить напрямую в сеть, то ее выход из строя неминуем. Обычно это происходит мгновенно. Полярность подключения дросселя не играет никакой роли. Его главное предназначение – стабилизация работы осветителя.
Подбор дросселя для конкретной ДРЛ лампы рассмотрен в таблице
Номинальный ток дросселя (ПРА)
Подбор определенного дросселя по току
Подробно изучить конструкцию и принцип работы дросселя вы можете — тут
Используемая емкость конденсатора выбирается исходя из мощности лампы. Рекомендации представлены в таблице.
При нынешнем развитии электроники, дроссель – архаичный элемент. Сейчас в продаже можно найти блоки электронной стабилизации дуги. Эти устройства могут выдержать точные параметры питания, которые необходимы для запуска и поддержания горения вне зависимости от изменения напряжения в осветительной сети.
Если не удается приобрести электронный балласт, его можно изготовить самостоятельно. Здесь Ф – фаза, 0 – ноль.
Сфера применения
ДРЛ предназначены для освещения больших площадей. Обычно они применяются в уличном освещении, на автозаправках, дорогах. Часто их используют на складах. Т.е. там, где не нужно высокое качество цветопередачи.
Для постоянного использования в жилом помещении их не применяют. Это объясняется малым коэффициентом цветопередачи и долгим выходом на штатный режим. В домашних условиях, как минимум, неудобно ждать около десяти минут после щелчка выключателем.
Очень часто они встречаются в осветительных установках для выставочных комплексов. Здесь их преимущества раскрываются в полной мере – максимальный мощность может составлять 1кВт, при этом световой поток достигает 52000 люмен. Свечение у них, как правило, одного цвета – 5500 кельвинов.
Утилизация
Рассматриваемые световые приборы отнесены к первому классу опасности. Поэтому, сейчас растет количество мест, где эти они запрещены к применению. Возможно, что через несколько лет ртутные лампы будут сняты с производства повсеместно, так как политика государств направлена на снижение количества оборудования, содержащего ртуть. Выполняя государственный приказ, коммунальное хозяйство сокращает применение ДРЛ.
К сожалению, не все задумываются о вопросах вывода таких источников света из эксплуатации. Этим они вредят не только себя, но и окружающим.
В скором времени их продажа будет полностью прекращена. Приборы, содержащие ртуть, будут оставлены только в медицинском оборудования до того момента, пока не будет найдет безопасный аналог.
В настоящее время утилизация ртутных ламп является лицензируемой услугой. 3 сентября 2010 года было принято соответствующее постановление правительства РФ. Документ описывает требования к процессу утилизации, содержит информацию о порядке действий при заражении ртутью. Описан процесс демеркуризации – удаления ртути.
Сейчас все юридические лица РФ обязаны формировать паспорт отходов на люминесцентные лампы и вести строгий учет ртутьсодержащих отходов. Наличие ртути – это уже потенциальная опасность.
Под переработкой и утилизацией понимаются восстановление отслуживших свой срок металлов из приборов их содержащих. Ртути в том числе. Поврежденная колба обеспечит выход жидкого металл в окружающую среду.
В России действует закон ФЗ-187 (статья 139). Согласно нему, за неправильную утилизацию или размещение контейнера для опасных отходов в ненадлежащем месте взыскивается штраф. Несанкционированный вывоз за территорию хранения также наказуем.
Выбор и характеристики ДРЛ
Среди зарекомендовавших с положительной точки зрения поставщиков можно упомянуть: GE, Philips, Osram, Sylvanya, Radium, DELUX, Лисма, Евросвет, E.NEXT.
Имеются модели с уже встроенным балластом. Таким внешний дроссель не требуется.
Для того, чтобы выбрать необходимый тип осветительного прибора потребуется ответить на такие вопросы:
- Какой срок службы необходим?
- Какая яркость будет достаточная для освещаемой площади?
- Патрон под какой цоколь будет использоваться?
- Какая потребуется мощность?
Особенностью этого типа ламп является требование к их размещению. Они должны быть расположены высоко. К примеру, осветитель мощностью 125 Вт должен быть поднят на высоту 4 метра, а мощностью 1 кВт – уже на 8 метров.
Аппараты пускорегулирующие для газоразрядных ламп высокого давления типа ДРЛ
Общие сведения
Пускорегулирующие аппараты (ПРА) предназначены для обеспечения режима зажигания и стабилизации тока дуговых ртутных ламп высокого давления типа ДРЛ при включении их в сеть переменного тока с номинальным напряжением 220 В частотой 50 Гц.
Структура условного обозначения
1ДБИ-ХДРЛ/220-Н-026М.УХЛ1:
1 — число ламп, включаемых с одним аппаратом;
ДБ — дроссель балластный;
И — индуктивный;
Х — мощность лампы, Вт (700; 1000);
ДРЛ — дуговая ртутная лампа;
220 — номинальное напряжение сети, В;
Н — конструктивное исполнение: независимый;
026 — номер серии;
М — модернизированный;
УХЛ1 — климатическое исполнение и категория размещения по ГОСТ
15150-69. 1ИХДРЛХН-Х.Х:
1 — число ламп, включаемых с одним аппаратом;
И — фаза потребляемого из сети тока при горящей лампе:
индуктивный;
Х — номинальная мощность лампы, Вт (70; 100; 125; 150; 250;
400);
ДРЛ — дуговая ртутная лампа;
Х — номер серии (01; 42; 44; 48);
Н — группа аппарата по уровню шума: нормальный (только для
встроенного исполнения);
Х — номер модификации (001; 002);
Х — климатическое исполнение (УХЛ, У) и категория размещения
(1; 2) по ГОСТ 15150-69.
Условия эксплуатации
Номинальные значения климатических факторов по ГОСТ 15150-69 и ГОСТ 15543.1-89.
Рабочее положение: аппараты независимого исполнения, предназначенные для эксплуатации на открытом воздухе, устанавливаются в вертикальном положении (крышкой вверх), а для работы в производственных помещениях могут устанавливаться как в вертикальном, так и в горизонтальном положениях.
При включении аппарата в сеть зажигание лампы наступает с момента подачи напряжения в течение не более 1 мин при температуре окружающей среды минус 25 и 20-40°С и не более 5 мин при температуре окружающей среды минус 40°С.
Время повторного зажигания лампы, прогоревшей не менее 15 мин, непосредственно после выключения (в горячем состоянии) должно быть не более 15 мин с момента подачи напряжения.
Класс защиты от поражения электрическим током для аппаратов встраиваемого исполнения 0, для аппаратов независимого исполнения I, для аппаратов типоисполнений 1И80ДРЛ48-001.УХЛ1 и 1И125ДРЛ42-001.УХЛ1 II по ГОСТ 12.2.007.0-75.
Все аппараты должны быть заземлены, кроме аппаратов типоисполнений 1И80ДРЛ48-001.УХЛ1 и 1И125ДРЛ42-001.УХЛ1; для этого внутри аппаратов независимого исполнения имеется специальная планка с винтом заземления, аппараты встраиваемого исполнения заземляются вместе со светильником, в который они встроены.
Аппараты соответствуют требованиям технических условий, обозначение которых приведено в табл. 1.
Какова конструкция пускорегулирующих аппаратов для ламп ДРЛ?
Эти аппараты предназначены для включения двухэлектродных ламп типа ДРЛ и могут эксплуатироваться в промышленных помещениях с нормальной средой с температурой от —10 до +40°С при относительной влажности до 85%.Схемы включения ламп типа ДРЛ. а— схема двухэлектродной лампы; б — схема четырехэлектродной лампы с реактором: в — схема четырехэлектродной лампы с автотрансформатором; Л —лампа типа ДРЛ; Р — реактор; и
Устройство лампы ДРЛ
Стандартная лампа ДРЛ состоит из стеклянной колбы, у которой снизу установлен цоколь с резьбой. Освещение происходит с помощью ртутно-кварцевой горелки, выполненной в виде трубки. Внутренняя часть трубки заполнена аргоном и небольшим количеством ртути.
У каждой лампы ДРЛ расшифровка аббревиатуры соответствует полному названию дуговых ртутных ламп.В более ранних конструкциях символ Д означал дроссель или лампу, где используется дроссель. В настоящее время используются бездроссельные лампы ДРЛ, доступные многим потребителям.
Поэтому в связи с изменениями функциональности, в маркировке лампы ДРЛ расшифровка буквы Д была изменена.Самые первые лампочки этого типа были оборудованы лишь двумя электродами. В связи с этим для их запуска требовалось дополнительное крупногабаритное устройство поджога, работающего за счет высоковольтного импульсного пробоя газового промежутка горелки. Эти лампочки были постепенно сняты с производства и заменены четырехэлектродными конструкциями, запускающимися только с помощью дросселя.
В четырехэлектродной лампочке имеются основные и дополнительные электроды. Соединение электродов с главными катодами осуществляется путем соединения противоположных полярностей добавочным угольным резистором.
Применение дополнительных электродов позволяет стабилизировать работу лампы и значительно упростить ее зажигание.Основная функция цоколязаключается в приеме электрической энергии из сети через точечный и резьбовой элемент от контактов патрона, установленного в светильнике.Затем, происходит подача электроэнергии к электродам. В кварцевой колбе имеются ограничивающие сопротивления в количестве двух штук, находящиеся в одной цепи с дополнительными электродами. На внутреннюю поверхность колбы наносится люминофор.
Принцип работы лампы ДРЛ
Каждая горелка изготавливается из прозрачного тугоплавкого материала, устойчивого к химическим воздействиям.
Для этого используются керамические материалы или кварцевое стекло. Инертный газ, закачиваемый внутрь, имеет точную дозировку. Окончательный дуговой электрический разряд создается путем добавления металлической ртути, обеспечивая нормальное свечение лампы.
Запуск выполняется с помощью зажигающих электродов.Когда к лампочке подается питающая электрическая энергия, происходит создание тлеющего разряда между зажигающим и основным электродом, которые расположены очень близко относительно друг друга. В результате, происходит накопление носителей зарядов, достаточных для появления пробоя на расстоянии между первым и вторым основным электродом.
Тлеющий разряд в самые короткие сроки принимает дуговую форму.Устойчивый свет и работа лампы типа ДРЛ начинается примерно через 10-15 минут, после подачи электроэнергии.В течение этого времени ток, протекающий в лампочке, значительно выше номинального значения и ограничивается сопротивлением, находящимся в пускорегулирующей аппаратуре. Продолжительность пуска напрямую зависит от температуры наружной среды. При низких температурах пусковой режим становится более продолжительным.
В процессе горения, излучение электрического разряда становится голубым или фиолетовым, благодаря свечению люминофора.
Происходит смешивание зеленовато-белого света горелки и красноватого люминофорного свечения.Получается яркий цвет, приближающийся к белому. Следует учитывать наличие колебаний напряжения электросети, оказывающих влияние на световой поток. При низком напряжении лампочка ДРЛ может попросту не запуститься, а та, которая горит – может погаснуть.Рассматривая принцип работы ртутных газоразрядных ламп (ДРЛ), следует учитывать ее сильный нагрев во время работы.
Поэтому конструкция приборов освещения с такими лампами предусматривает использование термостойких проводов и качественных контактов, устанавливаемых в патроне.В процессе нагревания происходит рост давления внутри горелки с одновременным ростом пробойного напряжения. Из-за этого нагретая лампа может не включиться. Прежде чем производить повторное включение, нужно дать ей остыть.
Лампы ДРВ и ДРЛ отличия
Оба типа светильников являются газоразрядными ртутными лампами, а точнее их разновидностями.
Они широко используются во внешнем и внутреннем освещении. Нередко возникает вопрос, как отличить лампу ДРЛ от ДРВ, поскольку внешне они абсолютно одинаковы. Тем не менее, каждая из них обладает индивидуальными особенностями, собственными техническими характеристики и принципами работы.
В обеих лампах для горелок использовано кварцевое стекло или специальный керамический состав. В каждую горелку помещены точные дозы инертных газов с небольшим количеством ртути.Напряжение поступает к ртутным лампам в область пары электродов, расположенных по бокам горелки.
За счет маленького расстояния газ между электродами быстро ионизируется, после чего в этом месте возникает тлеющий разряд. Он постепенно переходит в зону между основными электродами, мгновенно превращается в дуговой разряд, после чего светильники с лампами ДРЛ начинают гореть в штатном режиме.Полностью нормативные световые качества набираются лампами примерно через 10 минут после включения.Для ограничения номинального тока в лампах ДРЛ используется пускорегулирующий прибор с установленным сопротивлением. После того как амплитуда переходит значение сетевого напряжения, вся энергия, накопленная индуктивностью, уходит в нагрузку.
В кварцевой горелке происходит некоторая задержка напряжения.В лампах типа ДРВ (дуговых ртутных вольфрамовых) такая подкачка энергии не требуется поскольку в них отсутствует индуктивный балласт.Функции ограничения тока выполняются самой вольфрамовой спиралью, с заранее установленным сопротивлением и мощностью, соответствующим пусковым режимам горелки. Напряжение горелки будет нарастать по мере ее разогрева, и постепенно уменьшаться на спирали. В результате внутренняя колба ламп ДРВ будет светиться на 30% меньше, чем лампы уличного освещения ДРЛ.
Основным отличием этих двух ламп является невозможность использования ДРЛ без пускорегулирующего устройства, в качестве которого используется дроссель.Он служит ограничителем тока, питающего лампу и должен обязательно соответствовать ее мощности. Если включение производится без дросселя, такая лампочка моментально сгорит под действием высокого тока, проходящего через нее.
Повторное включение лампы ДРЛ можно выполнять лишь после ее полного остывания.Оба типа ламп обладают повышенной чувствительностью к перепадам температур. Поэтому вся конструкция защищена наружной колбой. Кроме того, ее внутренняя сторона покрыта люминофором, с помощью которого ультрафиолетовое свечение преобразуется в часть спектра красного цвета.
Срок службы лампы ДРЛ
Данные лампы получили широкое распространение для уличного и промышленного освещения.
В случае необходимости они могут использоваться и для внутреннего освещения помещений. Такая популярность стала возможной, благодаря таким эргономическим показателям, как соответствие излучения солнечному свету, коэффициент пульсаций светового потока и другим. Немаловажное значение имеет и тот факт, что ламп ДРЛ варьируется в очень широком диапазоне, значительно расширяя сферу их использования.
Особое внимание следует обратить на сроки службы, заявленные производителями. Как показывает практика, ртутные лампы ДРЛ после 2-3 месяцев эксплуатации в зависимости от интенсивности использования, теряют значительную часть светового потока.Вместе с тем, расход электрической энергии остается на том же уровне.
Кроме того, было достоверно установлено, что эти лампы обладают так называемым эффектом старения. То есть, через 400 часов работы их световой поток снизится примерно на 20%, а к концу срока эксплуатации данный показатель составит уже 50%.Данные недостатки полностью перекрываются простотой и технологичностью, доступностью и низкой стоимостью ртутных газоразрядных лампочек. Их использование становится экономически выгодным при отсутствии жестких требований к освещению на конкретном объекте или участке.