3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Типы химических источников энергии

Химические источники тока. Виды и особенности. Устройство и работа

Химические источники тока (ХИТ) — эта тема имеет высокое практическое значение. Это кардиостимуляторы, электромобили, которые пытаются сохранить экологию, портативные устройства, включая фото и видеотехнику, компьютерную технику, навигаторы. За последние годы прогресс химических источников тока произошел большой, от известных свинцовых аккумуляторов, которые постепенно вытесняются литий-ионными, литий-полимерными и другими аккумуляторами.

В этой области борьба идет за мощность, емкость, которая позволяет максимально долго использовать источники тока. Дополнительным стимулом к их развитию является создание гибких источников тока. Научная составляющая в этой области лежит в плане разработки материалов для таких химических элементов.

Устройство и работа

Химические источники тока состоят из электродов и электролита, который находится в емкости. Электрод, на котором окисляется восстановитель, называется анодом. Электрод, на котором восстанавливается окислитель, называется катодом. В общем получается электрохимическая система.

Попутным результатом такой реакции стало возникновение тока. Восстановитель передает электроны на окислитель, который восстанавливается. Электролит, который находится между электродами, нужен для прохождения реакции. Если перемешать порошки различных двух металлов, то электричество не возникнет, энергия появится в виде теплоты. Электролит необходим для упорядочения процесса движения электронов. Электролит состоит обычно из раствора соли или расплавленного вещества.

Электроды имеют вид решеток или пластин из металла. При помещении их в раствор электролита получается разность потенциалов пластин. Анод отдает электроны, а катод их принимает. На поверхности возникают химические реакции. Когда цепь размыкается, то реакции прекращаются. Если реагенты закончились, то реакция также больше не идет. Если удалить один из электродов, то цепь размыкается.

Из чего состоят химические источники тока

В качестве окислителей применяются соли и кислородосодержащие кислоты, а также нитроорганические вещества, кислород. В качестве восстановителей применяются металлы, оксиды, углеводороды.

Электролит может состоять из:
  • Соли, щелочи и кислоты, растворенные в воде.
  • Соли в растворе, с возможностью электронной проводимости.
  • Расплавленные соли.
  • Твердые вещества с подвижным ионом.
  • Электролиты в виде матрицы. Это растворы жидкости, расплавы, которые находятся в порах электроносителя.
  • Электролиты с ионным обменом. Твердые вещества с закрепленными ионогенными группами, с одним знаком. С другим знаком ионы подвижны. Эта характеристика позволяет создать однополярную проводимость.

Гальванические элементы

Напряжение на ячейке составляет 0,5-4 вольта. В химических образцах источника применяют гальваническую батарею, которая состоит из элементов. Может использоваться параллельная схема нескольких элементов. При последовательной схеме в цепь включены одинаковые батареи. Они должны обладать одинаковыми свойствами, с одной конструкцией, технологией, типоразмером. Для схемы параллельного соединения подойдут элементы с различными свойствами.

Классы
Химические источники тока делятся по следующим свойствам:
  • Размерности.
  • Конструктивным особенностям.
  • Применяемым химическим веществам.
  • Источнику реакции.

Эти свойства создают эксплуатационные параметры источников, которые подходят для определенной области использования.

Деление на классы электрохимических источников основывается на отличии в способе действия устройства. По этим свойствам их различают:
  • Первичные источники – для однократного применения. В них заключен определенный запас веществ, который будет израсходован при реакции. Когда произойдет разряд, ячейка исчерпывает свою способность к работе. Первичные источники, основанные на химических реакциях, называются элементами. Наиболее простой элемент – это батарейка типа АА.
  • Химические источники тока , которые имеют возможность перезаряжаться, называются аккумуляторами, это вторичные многоразовые элементы. Израсходованные химические элементы могут регенерироваться и снова накопить энергию, путем подключения к ним тока. Это называется зарядкой элементов. Такие элементы применяют длительное время, так как их легко зарядить. В процессе разряда вырабатывается электрический ток. К таким источникам можно причислить элементы питания различных видов приборов и устройств, таких как смартфоны, ноутбуки и т.д.
  • Тепловые химические источники тока – это приборы постоянного действия. В результате их работы постоянно поступает новая порция веществ и удаляется использованный продукт реакции.
  • В смешанных элементах находится запас реагента. Другой реагент поступает в устройство снаружи. Время действия устройства имеет зависимость от резерва первого вещества. Комбинированные элементы применяются в качестве аккумуляторов, когда имеется возможность регенерации их заряда через прохождение тока от внешнего питания.
  • Химические источники тока, которые могут возобновлять заряд , заряжаются разными способами. В них можно заменять израсходованные реагенты. Такие источники действуют не постоянно.
Свойства
Основные характеристики ХИТ можно перечислить в таком виде:
  • Разрядное напряжение. Это свойство имеет зависимость от определенной электрохимической системы. А также оказывает влияние процент концентрации электролита, температура, ток.
  • Мощность.
  • Разрядный ток, зависящий от сопротивления цепи.
  • Емкость, наибольшее количество энергии, которое источник выдает при общем разряде.
  • Запас энергии – наибольшая энергия, которая получена при полном разряде устройства.
  • Энергетические свойства и характеристики. Для батарей аккумуляторов это число циклов заряда и разряда, без уменьшения емкости и напряжения (ресурс).
  • Температурный интервал работы.
  • Сохраняемый срок – наибольший допускаемый период времени от изготовления до первого разряда элемента.
  • Время службы – наибольший допускаемый срок работы и хранения. Для элементов на топливе имеют значение сроки работы при постоянной и периодической работе.
  • Полная энергия, отданная за все время работы.
  • Механическая, вибрационная прочность.
  • Возможность функционирования в любом положении.
  • Надежная работа.
  • Простота в уходе.
Сахарная батарея

Чтобы произвести литий-ионные аккумуляторы в Японии закупают материалы в других странах. Это негативно сказывается на экономическом положении страны. Поэтому ученые ищут способы изготовления аккумуляторов из того сырья, которое имеется в наличии. Таким сырьем в Японии стал сахар. Аккумулятор на сахаре в Японии по свойствам имеет надежность и энергоемкость выше обычных аналогов, и стоимость его ниже.

Большой спрос на литий, который вызван резким распространением переносных аккумуляторов, озаботил производителей аккумуляторов, так как этот элемент добывается только в странах с политической нестабильностью. Это явилось вторым фактором поиска альтернативных материалов для недорогих аккумуляторов с высокой надежностью. Сахароза легко преобразуется в дешевый материал для анодного сырья в литий-ионных батареях.

Сахар нагревают в условиях вакуума под давлением до 1500 градусов. Он превращается в порошок, состоящий из углерода, который может повысить заряд на 20% больше аналогичных изделий. Это явилось первым шагом в разработке дешевых батарей. Пока такие виды батарей не составляют конкуренции современным аккумуляторам. Но ученые предполагают, что в будущем подобные разработки вытеснят дорогие изделия.

Требования

Конструктивные особенности химических источников тока должны создавать условия, которые способствовали бы максимальной эффективности химических реакций.

К таким условиям можно отнести:
  • Недопущение утечек тока.
  • Постоянная работа.
  • Герметичность.
  • Раздельное помещение реагентов.
  • Качественное контактирование электролита с электродами.
  • Хороший отвод тока из объекта химической реакции до наружного вывода с наименьшими потерями.
К химическим элементам предъявляются требования:
  • Повышенные значения свойств.
  • Максимальный диапазон температуры работы.
  • Наибольшее напряжение.
  • Минимальная себестоимость электричества.
  • Постоянное значение напряжения.
  • Хорошее сохранение заряда.
  • Безопасное функционирование.
  • Простое обслуживание, или ее отсутствие.
  • Долговременная работа.
Эксплуатация источников тока

Основное достоинство первичных элементов состоит в отсутствии надобности обслуживания. Перед работой нужно просто осмотреть их, определить срок годности. При включении в цепь нельзя путать полярность и допускать повреждения контактов. Сложные конструкции источников требуют особого ухода. Цель его заключается в удлинении срока службы до максимума.

Уход за аккумуляторами требует выполнения следующих мероприятий:
  • Обеспечение чистоты.
  • Контроль параметра напряжения отключенной цепи.
  • Обеспечение необходимого уровня электролита, доливки дистиллированной воды.
  • Проверка концентрации электролита ареометром.

При использовании батареек (гальванических элементов) нужно выполнять требования, которые относятся к применению электрических приборов.

Сфера использования
В современное время химические источники тока используются в:
  • Транспорте.
  • Переносных устройствах.
  • Космической технике.
  • Оборудовании научных исследований.
  • Медицинских приборах.
Применяются в бытовой сфере:
  • Батарейки (сухие).
  • Батареи аккумуляторов электроники.
  • Аккумуляторы на автомобилях.

Большое распространение нашли литиевые химические источники тока. Это обусловлено наличием у лития максимальной удельной энергии. Он отличается наиболее отрицательным потенциалом электрода из металлов. Батареи литий ионного типа опередили все другие источники по размеру значений удельной энергии. В настоящее время ученые разрабатывают различные усовершенствования литиевых аккумуляторов. Разработки ведутся в направлении получения конструкций корпуса сверхмалой толщины, которые будут использоваться для питания смартфонов и подобных им гаджетов, а также создание сверхмощных батарей аккумуляторов.

В последнее время серьезные работы ученых ведутся по изобретению и модернизации топливных батарей – устройств, которые создают электрическую энергию, за счет проведения химических реакций веществ, постоянно подающихся к электродам снаружи. Для окисления берут кислород, а в качестве топлива пытаются использовать водород. На основе таких батарей уже действуют некоторые опытные образцы на электростанциях.

Химические источники тока: основные характеристики

Уже более двух столетий человечество использует энергию химических реакций между различными веществами для получения постоянного тока.

Принцип работы

Окислительно-восстановительная реакция, протекающая между веществами, обладающими свойствами окислителя и восстановителя, сопровождаются выделением электронов, движение которых образует электрический ток. Однако, чтобы использовать его энергию, необходимо создать условия для прохождения электронов через внешнюю цепь, в противном случае она при простом смешивании окислителя и восстановителя выделяется во внешнюю среду теплом.

Поэтому все химические источники тока имеют два электрода:

анод, на котором происходит окисление;

катод, осуществляющий восстановление вещества.

Электроды на расстоянии помещены в сосуд с электролитом — веществом, проводящим электрический ток за счет процессов диссоциации среды на ионы.

Принцип преобразования химической энергии в электрическую

На рисунке показано, что электроды размещены в отдельных сосудах, соединенных солевым мостиком, через который создается движение ионов по внутренней цепи. Когда внешняя и внутренняя цепь разомкнуты, то на электродах протекают два процесса: переход ионов из металла электрода в электролит и переход ионов из электролита в кристаллическую решетку электродов.

Скорости протекания этих процессов одинаковы и на каждом электроде накапливаются потенциалы напряжения противоположных знаков. Если их соединить через солевой мостик и приложить нагрузку, то возникнет электрическая цепь. По внутреннему контуру электрический ток создается движением ионов между электродами через электролит и солевой мостик. По внешней цепи возникает движение электронов по направлению от анода на катод.

Практически все окислительно-восстановительные реакции сопровождаются выработкой электроэнергии. Но ее величина зависит от многих факторов, включающих объемы и массы используемых химических веществ, примененных материалов для изготовления электродов, типа электролита, концентрации ионов, конструкции.

Наибольшее применение в современных химических источниках тока нашли:

для материала анода (восстановителя) — цинк (Zn), свинец (Pb), кадмий (Cd) и некоторые другие металлы;

для материала катода (окислителя) — оксид свинца PbO2, оксид марганца MnO2, гидроксооксид никеля NiOOH и другие;

электролиты на основе растворов кислот, щелочей или соли.

Способы классификации

Одна часть химических источников тока может повторно использоваться, а другая нет. Этот принцип взят за основу их классификации.

Классификация химических элементов

Электродвижущая сила гальванических элементов, в зависимости от конструкции, достигает 1,2÷1,5 вольта. Для получения больших значений их объединяют в батареи, соединяя последовательно. При параллельном подключении батарей увеличивается ток и мощность.

Принято считать, что первичные химические источники тока не поддерживают повторную зарядку, хотя более точно это положение можно сформулировать по-другому: ее проведение экономически не целесообразно.

Резервные первичные химические источники тока хранятся в состоянии, когда электролит изолирован от электродов. Это исключает протекание окислительно-восстановительной реакции и обеспечивает готовность к вводу в работу. Они не используются повторно. Срок хранения резервных химических источников тока ограничен в 10÷15 лет.

Аккумуляторы успешно перезаряжаются приложением внешней электрической энергии. Благодаря этой возможности их называют вторичными источниками тока. Они способны выдерживать сотни и тысячи циклов заряда-разряда. ЭДС аккумулятора может быть в пределах 1,0÷1,5 вольта. Их тоже объединяют в батареи.

Электрохимические генераторы работают по принципу гальванических элементов, но у них для проведения электрохимической реакции вещества поступают извне, а все выделяющиеся продукты удаляются из электролита. Это позволяет организовать непрерывный процесс.

Основные рабочие характеристики химических источников тока

1. Величина напряжения на разомкнутых клеммах

В зависимости от конструкции единичный источник может создавать только определенную разность потенциалов. Для использования в электрических устройствах их объединяют в батареи.

2. Удельная емкость

За определенное время (в часах) один химический источник тока может выработать ограниченное количество тока (в амперах), которые относят к единице веса либо объема.

3. Удельная мощность

Характеризует способность единицы веса или объема химического источника тока вырабатывать мощность, образованную произведением напряжения на силу тока.

4. Продолжительность эксплуатации

Еще этот параметр называют сроком годности.

5. Значение токов саморазряда

Эти побочные процессы электрохимических реакций приводят к расходу активной массы элементов, вызывают коррозию, снижают удельную емкость.

6. Цена на изделие

Зависит от конструкции, применяемых материалов и ряда других факторов.

Лучшими химическими источниками тока считаются те, у которых высокие значения первых четырех параметров, а саморазряд и стоимость низкие.

Принципы заряда аккумуляторов

Среди вторичных химических источников тока большую популярность набирают литий ионные модели, которые стали массово применяться для питания электронных устройств. У них материалом положительного электрода используется LiMO2 (M Co, Ni, Mn), а отрицательного — графит.

При заряде ионы лития от приложенной внешней энергии выделяются из металла катода, проходят через электролит и проникают в пространство между слоями графита, накапливаясь там.

Когда энергия зарядного устройства отсутствует, а к электродам подключена нагрузка, то ионы лития в электролите двигаются в противоположную сторону.

Если заряд и разряд не проводятся, то энергия в аккумуляторе не расходуется, а сохраняется. Но ее количество ограничивается свойствами применяемых материалов. К примеру, у литий-ионных аккумуляторов значение удельной электроемкости составляет 130÷150 мАч/г. Оно лимитировано свойствами материала анода. Для графита емкость выше примерно в два раза.

Ученые сейчас ищут способы повышения емкости аккумулятора, изучают возможности использования химической реакции, проходящей между литием и кислородом воздуха. Для этого разрабатываются конструкции с воздушным, не расходуемым катодом, используемые в отдельных аккумуляторах. Этот метод может до 10 раз увеличить плотность энергии.

Эксплуатация химических источников тока требует знания основ электротехники, электрохимии, материаловедения и физики твердых тел.

Типы химических источников энергии

К химическим источникам электрической энергии относятся гальванические элементы и аккумуляторы. В них химическая энер­гия окислительно-восстановительных процессов преобразуется в электрическую энергию постоянного тока.

Классификация химических источников тока.

Не вдаваясь в детали устройства химических источников и протекающих в них химических реакций, остановимся на эксплуатацион­ных показателях наиболее распространенных их типов.

Марганцево-цинковые элементы со щелочным или солевым электролитом выпускаются промышленностью в двух конструктивных разновидностях: стаканчиковой (цилиндрической) и в виде параллелепипеда или диска (галетной). Они отличаются малой стоимостью, широким температурным диапазоном и длитель­ным сроком хранения.

Эти элементы, как и все остальные химические элементы, разово­го действия.

Таблица вторичных источников питания.

Ртутно-цинковые элементы имеют высокую механическую прочность, малый уровень саморазряда (3-5% за месяц), срок хранения более 18 месяцев, безвредны для обслуживающего персонала, но в их производстве применяются весьма вредные ве­щества. Стоимость этих элементов в 12-17 раз выше, чем марганцево-цинковых.

Медно-магниевые элементы из-за большого само­разряда применяются как резервные. Они приводятся в действие введением специального активатора непосредственно перед употреб­лением. После активации их срок хранения меньше суток. Разряд этих элементов сопровождается саморазогреванием, что позволяет им работать при весьма низких температурах, но активация должна производиться при положительной температуре. Стоимость таких элементов почти в 20 раз выше, чем марганцево-цинковых.

Аккумуляторы отличаются от гальванических элементов тем, что окислительно-восстановительные процессы в них обратимы. Поэтому они пригодны для многократного использования. Промыш­ленностью выпускаются различные типы аккумуляторов, которые классифицируются по виду электролита на кислотные и щелоч­ные, по материалу электродов на свинцовые, кадмиево-никелевые, серебряно-цинковые и др., по конструкции на ламельные, безламельные, герметизированные и др.

Щелочные кадмиево-никелевые ламельные (КН) и безламельные (КБН) аккумуляторы (открытые, непроливаемые и герметизированные) просты в эксплуатации, имеют срок службы 50-1000 циклов заряд — разряд, обладают самой высо­кой механической прочностью из всех химических источников тока, саморазряд их не превышает 20% за месяц, сохранность в залитом состоянии более двух лет. Эти аккумуляторы работают в широком диапазоне температур с относительно небольшим снижением удель­ных показателей. Стоимость герметичных кадмиево-никелевых аккумуляторов почти в сто раз выше, чем марганцево-цинкового элемента той же емкости, но больший срок службы снижает стоимость источника питания с таким аккумулятором при длительной эксплу­атации.

Читать еще:  Армированный бетон

Серебряно-цинковые аккумуляторы обла­дают наилучшими удельными характеристиками. Однако они выдерживают только 50-100 циклов перезарядки. Саморазряд их составляет 5-10% за месяц. Сохраняются они без электролита 5 лет, а с электролитом только 6 месяцев.

Химические источники тока

Обозначение на схеме и устройство химических источников тока

К химическим источникам тока причисляют гальванические элементы и аккумуляторы. Есть и другие химические источники тока, но они менее распространены. В обиходе гальванический элемент получил название батарейка. Это не совсем верное определение, так как батарейкой можно назвать несколько отдельных гальванических элементов соединённых вместе – это и есть батарея питания или батарейка.

На принципиальных схемах гальванический элемент обозначается так.

Так обозначают один гальванический элемент или один элемент аккумулятора.

Но поскольку номинальное напряжение на одном гальваническом элементе обычно не более 1,5 вольта, их соединяют в батареи питания. Батарея питания на принципиальной схеме обозначается вот так.

Здесь показано, что батарея питания состоит из двух отдельных гальванических элементов. Общее напряжение на полюсах этой составной батареи — 3 вольта из расчёта, что каждый из элементов имеет на полюсах напряжение 1,5 вольта. Также на схемах можно встретить и такое обозначение.

Это тоже условное изображение батареи питания или батарейки на принципиальной схеме, только здесь не уточняется, сколько именно гальванических элементов используется в батарее, а указано лишь общее напряжение на полюсах батареи.

Одиночный аккумуляторный элемент обозначается на схемах так же, как и отдельный гальванический элемент. Номинальное напряжение одного аккумуляторного элемента обычно составляет около 1,25 вольт. Чтобы получить аккумулятор с большим напряжением аккумуляторные элементы соединяют вместе – получается аккумуляторная батарея или просто аккумулятор. Обозначение аккумуляторной батареи на схемах такое же, как и батареи, составленной из гальванических элементов.

Чем гальванический элемент отличается от аккумулятора?

Дело в том, что гальванический элемент сам является источником постоянного тока, который образуется за счёт необратимой химической реакции. Гальванический элемент причисляют к первичным источникам тока.

Аккумулятор является так называемым вторичным источником тока. Почему? Потому, что перед тем, как использовать аккумулятор, его нужно предварительно зарядить от источника постоянного тока — зарядника. Только после полной зарядки аккумулятор сможет питать электронное устройство. Отличительным качеством аккумуляторов является то, что их можно заряжать и разряжать много раз. В отличие от аккумулятора, гальваническая батарея питания после своего полного разряда не может быть использована повторно.

Какие существуют батарейки?

Наибольшее распространение в настоящее время получили щелочные батареи питания. Их ещё называют алкалиновыми – производное от английского слова alkaline – «щелочь».

Работа щелочной батарейки основана на окислительно-восстановительной химической реакции между цинком и диоксидом марганца. Результатом, а точнее полезным продуктом этой реакции является электрический постоянный ток и тепло, которое не используется. Электрическая ёмкость щелочной батарейки составлет около 1700 — 3000 мАч. По величине своей ёмкости, щелочные батарейки лидируют по сравнению с солевыми батарейками, электроёмкость которых меньше и составляет 550 — 1100 мАч.

Щелочная батарейка устроена следующим образом. Взглянем на рисунок.

Корпусом элемента является никелированный стальной стакан. Он же является плюсовым контактом батарейки « +». Активная масса представляет собой смесь диоксида марганца (MnO2) и графита. Анодная паста – это смесь порошка цинка (Zn) и густого щелочного электролита. Электролитом обычно служит раствор гидроксида калия (KOH). Анодная паста отделена от активной массы сепаратором. Сепаратор разделяет реагенты, исключая их перемешивание и нейтрализацию заряда. Также сепаратор пропитан электролитом.

Отрицательный потенциал снимается с латунного стержня, который окружён анодной пастой. Стальная тарелка контактирует с латунным стержнем – токосъёмником и является отрицательным контактом элемента «».

Прокладка изолирует никелированный стальной стакан от стальной тарелки, препятствуя тем самым короткому замыканию. Кроме этого прокладка сдерживает давление газа, который в незначительном количестве образуется при химической реакции. В толще прокладки имеется защитный клапан или по-другому предохранительная мембрана. Защитный клапан служат для того, чтобы при чрезмерном давлении газа сработать и выпустить его наружу. Это предотвращает взрыв щелочного элемента, но и приводит к его разгерметизации. Как правило, разгерметизация приводит к течи электролита.

Иногда, забыв вынуть уже подсевшие батарейки, через некоторое время можно обнаружить, что в батарейном отсеке появилась какая-то жидкость. Это и есть потёкший электролит. Он может вызвать коррозию контактов. Поэтому на упаковке с батарейками можно найти предупреждение о том, что севшие элементы нужно вынимать из электроприборов. Теперь вы знаете, зачем это нужно делать.
Итак, с устройством разобрались, теперь поговорим о том, как работает щелочной элемент.

Как работает щелочной элемент.

Для начала, маленькое отступление…
Как вы заметили, почему то анодная паста соединяется с помощью токосъёмника с отрицательным контактом элемента – стальной тарелкой. А ведь анод – это « +». Получается нестыковочка…

В чём тут дело? А дело в том, что в электронике есть один каламбур. По умолчанию, за направление тока в электрической цепи считается направление от плюса (анода) к минусу (катоду) – так повелось ещё с тех времён, когда электроника ещё зарождалась.

Но ведь электрический ток, как известно, это упорядоченное движение электронов, которые имеют отрицательный заряд. И поэтому, ток течёт оттуда, где есть избыток электронов, в направлении, где есть нехватка отрицательных зарядов (это и есть плюс – недостаток электронов). При этом получается, что ток течёт в реальности от отрицательного контакта к положительному. Именно поэтому образуется эта нестыковка, которая порой вводит начинающих радиолюбителей в ступор.

В электрохимии анодом принято считать тот электрод, на котором происходит процесс окисления. Так вот в щелочной батарейке (и не только) на аноде в результате окисления образуется избыток электронов. То есть по сути – это катод, «минус». Но, как уже говорилось, в электрохимии всё наоборот. Итак, электроны вырабатываются анодной пастой – смесью цинкового порошка (Zn) и густого электролита (раствора KOH).

Катодом же считается электрод, где происходит реакция восстановления. Далее электроны, которые были получены в результате реакции окисления, проходят по электрической цепи электронного прибора, и возвращаются опять в батарейку, но уже на катод, где эти электроны используются для восстановительной химической реакции. Катод – это диоксид марганца. Токоприёмником катода служит никелированный стальной стакан, который контактирует с активной массой – диоксидом марганца (MnO2).

Вот такая игра в наоборот. Напомню ещё раз, что в электронике за направление тока в цепи считается направление от плюса-«анода» к минусу-«катоду». В электрохимии всё наоборот. С этим и связаны особенности в названии реагентов химического источника тока.

Можно ли заряжать батарейки?

Также часто можно слышать вопрос: «Можно ли заряжать батарейки?» Ответим: «Лучше не стоит». Дело в том, что для вырабатывания электрической энергии в батарейках используется необратимая химическая реакция. Поэтому батарейка и является первичным источникам тока.

А вот в аккумуляторах используется обратимая химическая реакция, которая позволяет заряжать и разряжать их множество раз. Поэтому аккумуляторы и называют вторичными источниками тока.

Несмотря на это, известно, что щелочные элементы допускают перезарядку, т.е. их можно зарядить и использовать повторно. Но такие, перезаряжаемые щелочные элементы имеют свою особую конструкцию. Также стоит отметить, что даже такие элементы нельзя перезаряжать много раз, обычно не более 25. В широкой продаже такие щелочные элементы не встречаются. Их маркируют как Rechargeable Alkaline Manganese.

Из всего этого следует, что заряжать обычные щелочные батарейки категорически не стоит. Такие эксперименты могут завершиться взрывом батарейки и разбрызгиванием электролита. А это не есть гуд +опасно для здоровья .

Чтобы замедлить химическую реакцию в щелочном элементе и, тем самым, продлить срок её хранения и снизить саморазряд батареи, в них раньше добавляли кадмий и ртуть. Эти вещества замедляли химическую реакцию, и цинк окислялся медленнее. Но, из-за токсичности ртути и кадмия их сейчас не используют, а применяют другие, менее вредные ингибиторы.

На многих батарейках можно даже увидеть надпись – 0% кадмия и ртути или 0% Hg & Cd. Это своеобразный маркетинговый ход, как бы намекающий на то, что данные батарейки безопасны.

Если вы с успехом дошли до этих строк, то теперь вас можно поздравить, ведь теперь вы знаете, как устроена и работает щелочная батарейка. И поэтому её и не обязательно разбирать . Кроме щелочных элементов питания существуют и другие, но об их устройстве мы расскажем в другой раз.

Большая Энциклопедия Нефти и Газа

Источник — химическая энергия

Источники химической энергии ( выделяющейся в виде тепла при протекании реакции) приобретают большое практическое значение в химической промышленности. [1]

Источниками химической энергии , необходимой для получения теплоты с последующим превращением ее в механическую работу в ДВС и других тепловых машинах, являются углеводородные топлива. Процесс преобразования химической энергии топлива в теплоту, происходящий в результате окисления топлива, называется процессом сгорания. [2]

Источником химической энергии служат высокоактивные реагенты. В них, в свою очередь, энергия была запасена на стадии их приготовления за счет некоторых других источников, обычно в конечном счете за счет электроэнергии. Так, в разобранном выше примере такими реагентами служили магний и бром, полученные, в свою очередь, электролизом соответствующих солей. [3]

В многочисленных исследованиях было показано, что основным фактором, определяющим скорость распространения пламени, является химическая реакция, служащая тем источником тепловой и химической энергии , который поддерживает горение и обеспечивает распространение пламени. [4]

Котельные топлива представляют собой вещества органического, растительного происхождения, химическая энергия которых превращается при их окислении ( сжигании) в поддающееся техническому использованию тепло газообразных продуктов сгорания; источником химической энергии топлива является аккумулированная солнечная энергия. Котельная техника использует, главным образом, твердые, а также и газообразные и жидкие топлива. [5]

Ракетный двигатель на твердом топливе является простейшей формой теплового двигателя. Ракетное топливо — источник химической энергии , содержащий горючее и окислитель, — загружается в камеру сгорания перед каждым пуском двигателя. При сгорании топлива развивается значительное давление, и продукты сгорания выбрасываются через сопло, в конце которого они приобретают сверхзвуковую скорость. При этом в реактивном двигателе создается тяга, или движущая сила, достаточная для полета ракеты. При горении топлива в ракетном двигателе он получает импульс, действующий в направлении, противоположном потоку истекающего из камеры газа. [6]

В цветной металлургии при использовании сернистых руд доминирующее значение занимает и будет занимать сера ( 65 — 72 %) как основной энергетический источник. Вторым по значению источником химической энергии в цветной металлургии является железо. [7]

Вся жизнь на Земле зависит от способности некоторых организмов ( зеленых растений, водорослей и фотосинтезирующих бактерий), содержащих характерные фотосинтезирующие пигменты, использовать энергию солнечной радиации для синтеза органических молекул из неорганических веществ — диоксида углерода, азота и серы. Продукты фотосинтеза служат затем не только исходными веществами, но и источником химической энергии для всех последующих биосинтетических реакций. Обычно принято описывать фотосинтез только как процесс образования углеводов; в некоторых случаях основными продуктами фотосинтеза, действительно, являются исключительно крахмал, целлюлоза и сахароза, однако в других организмах на синтез углеводов идет, быть может, всего лишь третья часть углерода, связываемого и восстанавливаемого в процессе фотосинтеза. При ближайшем рассмотрении оказывается, что нельзя провести четкую границу между образованием продуктов фотосинтеза и другими биосинтетическими реакциями в клетке, в которых могут участвовать промежуточные вещества фотосинтетического цикла восстановления углерода. [8]

Способы получения ядерной энергии описываются в специальной литературе. Остановимся на этом вопросе очень кратко и в самом общем виде, чтобы получить сравнительную оценку с источниками химической энергии , широко использующимися в современных ракетных двигателях. Источники ядерной ( атомной) энергии очень перспективны для ракетных двигателей, но еще далеки от широкого практического использования. [9]

В многочисленных исследованиях было изучено влияние различных факторов на нормальную скорость горения газовых смесей. Все эти исследования приводят к заключению, что основным фактором, определяющим скорость распространения пламени в газовых смесях, является химическая реакция, служащая тем источником тепловой и химической энергии , который поддерживает горение и обеспечивает распространение пламени. Впервые мысль об основной роли химической реакции, ее кинетики в механизме распространения пламени была высказана Пей-маном и Уилером [1342] ( 1929 г.), которые на этой основе дали качественное истолкование установленной на опыте зависимости скорости пламени от состава горючих смесей. Так, например, приведенной на рис. 143 зависимости скорости пламени в кислородно-азотных смесях метана от их состава, из которой следует резкое уменьшение скорости пламени при добавлении метана или кислорода сверх стехиометрии ( отвечающей составу СН4 202) или при добавлении азота, Пейман и Уилер дают следующее объяснение. [11]

В многочисленных исследованиях было изучено влияние различных факторов на нормальную скорость горения газовых смесей. Все эти исследования приводят к заключению, что основным фактором, определяющим скорость распространения пламени в газовых смесях, является химическая реакция горения, служащая тем источником тепловой и химической энергии , который поддерживает горение и обеспечивает распространение пламени. [12]

Подобного рода явления произошли бы, конечно, и при столкновении или проникновении одной системы другой с неодинаковым направлением движения частей. По аналогии мы можем себе представить нечто подобное и ори взаимном действии атомов разнородных тел. При таком представлении об источнике химической энергии нам гораздо легче объяснить и то иногда громадное количество теплоты, света или электричества, отделяющееся при химических процессах; а для самого химического процесса это дает возможность более ясно объяснить себе то изменение существенных свойств материи, сопровождающее эти процессы и которое, вообще говоря, соответствует количеству утраченной в виде теплоты энергии. Что же касается самого рода движения, то, конечно, относительно его формы могут существовать одни только гадательные предположения; но я полагаю, что уже тетерь можно указать на ближайшую аналогию или даже тождество этого элементарного движения с тем, которое — представляет нам динамическое электричество. Замещение одного металла другим в растворах солей, с одной стороны, и электролиз тех же солей током, происходящим от такого же растворения и притом в химически эквивалентных отношениях в обоих случаях, невольно заставляет обратить внимание на ближайшую связь этих двух явлений. [13]

Эволюция живого мира в течение геологического времени приводит к расширению круга таксонов, к увеличению разнообразия форм и замене одних форм другими. Отмечаются и различия в биохимическом составе организмов, стоящих на различных ступенях генетической лестницы, несмотря на единство биохимического плана строения живых организмов. Органические компоненты живых веществ представлены главным образом белками, жирами, углеводами и построены из атомов углерода, водорода, кислорода, азота, серы, фосфора. Клетки живых организмов и растений используют эти элементы в качестве источника химической энергии в ходе метаболизма. Распад химических веществ в клетках различных животных осуществляется по единому плану. Однако имеется и ряд различий в биохимическом составе организмов, обусловленных как эволюцией живого вещества в фанерозое, так и различием условий жизни в разных бассейнах в одно и то же геологическое время. [14]

Химические источники энергии.

Атомная энергия.

Мы часто употребляем слово «энергия». О сорте шоколада говорят, что он хорошо компенсирует затраты энергии, о полном сил человеке — «сгусток энергии», а учителей и воспитателей призывают энергичнее принимать меры.
Учёные занимаются физикой высоких энергий, политики и экономисты обсуждают использование энергии солнца, ветра и атомного ядра. Но даже специалистам трудно сказать, что же это такое — энергия!
Весьма близким к истине было бы определение энергии как запасенной работы или способности совершать работу. Итак, энергия необходима для того, чтобы начать какое-либо движение, ускорить перемещение, что-то поднять, нагреть и осветить. Без энергетической подпитки невозможно любая жизнедеятельность, не двигаются автомобили, не работает отопление. Энергия не может ни возникнуть из ничего, не исчезнуть бесследно. Но она может быть получена из природных ресурсов, таких как уголь, природный газ или уран, и превращена в удобные для нас формы, например в тепло или свет. В окружающем нас мире мы находим различные формы накопления энергии: вода в водохранилище обладает потенциальной энергией, движущийся автомобиль — энергией движения, натянутый лук — энергией натяжения, грозовые облака — электрической энергией, солнечные лучи — световой, нефть — химической, а в уране накоплена ядерная энергия.

Читать еще:  Как сделать простой сварочный аппарат своими руками

Преобразование энергии на АЭС (начальные сведения о реакторной установке РБМК-1000)

Определение: Энергия это мера возможности совершить работу. Для примера: Сжатая пружина в механических часах обладает энергией достаточной для работы часов в течении суток или более. Батарейки в детской игрушке позволяют ей работать в течении нескольких часов. Раскрутив детский волчок, можно сообщить ему энергию достаточную для вращения в течении некоторого времени.

Энергия и работа связанные между собой понятия, единицей для их измерения служит Джоуль [Дж]. Одно из определений работы из курса физики:

Определение:Работой силы F на прямолинейном пути s, в случае когда направление силы и направление движения совпадают, называется произведение силы на путь.

Опуская груз массой 1 кг на высоту s=1 м мы совершаем работу за счет силы тяжести. Сила тяжести G действующая на груз массой 1 кг рассчитывается по формуле:

где, ускорение свободного падения:

следовательно работа при опускании груза:

Подняв груз массой 1 кг на высоту 1 м мы совершили работу A=9.8 Дж. Если груз отпустить, то под действием силы тяжести опустившись на 1 м груз может совершить работу. Другими словами тело массой 1 поднятое на высоту 1 м обладает энергией (возможностью совершить работу) равной 9.8 Дж. В данном случае речь идет о потенциальной энергии в поле силы тяжести.

Движущиеся тело может столкнувшись с другими телами вызвать их движение (совершить работу). В этом случае речь идет о кинетической энергии. Сжимая (деформируя) пружину, мы сообщаем ей потенциальную энергию деформации(возможность совершить работу при распрямлении). В повседневной жизни мы наблюдаем непрерывное перетекание энергии из одного вида в другие. Подбросив мяч мы сообщаем ему кинетическую энергию, поднявшись на высоту h он приобретает потенциальную энергию, в момент удара о землю мяч подобно пружине сжимается приобретая потенциальную энергию деформации, и т.д. Все выше перечисленные виды энергии относятся к механической энергии.

Виды и источники энергии

Тепловая энергия

Вторым, после механической, видом энергии, которым человек пользуется на протяжении почти всей своей истории является тепловая энергии. Наглядное представление о тепловой энергии человек получает с пеленок: это горячая пища, тепло систем отопления в современной квартире (если его не отключили), или тепло печки в деревенском доме. Что же представляет собой эта энергия с точки зрения физики? Каждое физическое тело состоит из атомов или молекул, в жидкостях и газах они хаотично движутся, чем выше скорость движения, тем большей тепловой энергией обладает тело. В твердом теле подвижность молекул или атомов значительно ниже чем в жидкости, а тем более в газе, молекулы твердого тела только колеблются относительно некоторого среднего положения, чем сильнее эти колебания тем большей тепловой энергией обладает тело. Нагревая тело (сообщая ему тепловую энергию), мы как бы раскачиваем его молекулы и атомы, при достаточно сильном «раскачивании» можно выбить молекулы со своего места и заставить хаотично двигаться. Этот процесс плавления наблюдал каждый, нагревая в руке кусочек льда. Продолжая нагрев мы как бы разгоняем движущиеся молекулы, при достаточном разгоне молекула может выйти за переделы тела. Чем больше нагрев, тем больше молекул могут покинуть тело, в конце концов, передав телу достаточное количество тепловой энергии можно превратить его в газ. Такой процесс испарения протекает кипящем чайнике.

Электрическая энергия

Мельчайшей электрически заряженной частицей является электрон, который в ходит в состав любого атома. Для нейтрального атома суммарный отрицательный заряд электронов равен положительному заряду ядра, а заряд всего атома равен нулю. Если удалить несколько электронов, то сумма зарядов электронов и ядра станет больше нуля. Если добавить лишних то атом приобретет отрицательный заряд. Из физики известно что два противоположно заряженных тела притягиваются. Если на одном теле сосредоточить положительный заряд (удалить с атомов электроны) а на другом отрицательный (добавить электроны), то между ними возникнут силы притяжения, но на больших расстояниях эти силы очень малы. Соединив эти два тела проводником (например металлической проволокой в которой электроны очень подвижны) мы вызовем движение электронов от отрицательно заряженного тела к положительно заряженному телу. Движущиеся электроны могут совершить работу (например накалить нить электролампы) следовательно заряженные тела обладают энергией. В источнике электрической энергии происходит разделение положительных и отрицательных зарядов замыкая электрическую цепь мы, как бы позволяем разделенным зарядам соединится но при этом заставляем их выполнить необходимую нам работу.

Химические источники энергии.

Самым первым источником энергии, который человек поставил себе на службу, были обыкновенные дрова для пещерного костра. При горении происходят химические реакции окисления. Самой распространенной и широко используемой, с древних времен и до наших дней, является реакция окисления углерода:

Углерод в ходящий в состав любого органического топлива (уголь, дерево, нефть, газ), взаимодействуя с кислородом атмосферы образует углекислый газ и выделяется тепловая энергия.

Химические реакции могут происходить как с поглощением так и с выделением энергии, сама энергия может быть как тепловой так и электрической. В автомобильном аккумуляторе при работе происходит выделение электрической энергии, при зарядке происходит поглощение электрической энергии.

Химическая энергия

Химическая энергия известна каждому современному человеку и широко используется во всех сферах деятельности.

Она известна Человечеству с самых давних времен и всегда применялась как в быту, так и на производстве. Наиболее распространенными устройствами, использующими химическую энергию являются: камин, печь, горн, домна, факел, газовая горелка, пуля, снаряд, ракета, самолет, автомобиль. Химическая энергия применяется в производстве медикаментов, пластика, синтетических материалов, и т.п.

Источники

Химические источники энергии являются «традиционными», однако их использование оказывает влияние на климат планеты. При нормальном функционировании экосистемы, солнечная световая энергия преобразуется в форму химической, и хранится в ней на протяжении продолжительного времени. Использование этих природных запасов, да и вообще нарушение энергетического баланса планеты приводит к непредсказуемым последствиям.

Человек не использует химическую энергию непосредственно (разве что к такому использованию можно отнести некоторые химические реакции).

Обычно химическая энергия, выделившаяся в результате разрыва высокоэнергетических и образования низкоэнергетических химических связей, выделяется в окружающую среду в виде тепловой энергии. Химическую энергию можно назвать наиболее распространенной и широко используемой с древности и до наших дней. Любой процесс, связанный с горением, имеет в своей основе энергию химического взаимодействия органического (реже минерального) вещества и кислорода.

Современное промышленное высокотехнологичное «горение» осуществляется в двигателях внутреннего сгорания и газовых турбинах, в плазменных генераторах и топливных элементах. Однако такие устройства, как турбины и двигатели внутреннего сгорания между сырьем (химической энергией) и конечным продуктом (электрической энергией) имеют нехорошего посредника – тепловую энергию. К великому сожалению ученых и инженеров, к.п.д. тепловых машин довольно мал – не более 40%. Ограничения на дальнейший рост кпд наложены не материалами, а самой природой. 40% — это предельный кпд тепловой машины и дальше его увеличить невозможно.

Топливный элемент производит непосредственное преобразование энергии химических связей в электрическую энергию. В некотором роде то же самое делает и плазменный генератор. Однако, и в том и в другом случае, часть энергии все равно теряется в виде выделяющегося тепла и рассеивается. Возможности решения проблемы рассеяния тепла пока не существует, что снижает кпд любой самой хорошей преобразующей установки.

Химические взаимодействия лежат в основе механической энергии движения тел людей и животных. Человек питается растениями и животными, получая из них энергию химических связей, которая сформировалась благодаря фотосинтезу. Таким образом, первоисточником для химической энергии является лучистая солнечная энергия, или, фактически, энергия ядерного синтеза от процессов, происходящих на Солнце. Как и всё живое на Земле, в конечном счете, человек питается энергией Солнца.

Приведем некоторые примеры цепочек преобразования химической энергии

При сгорании порох превращается в горячие газы, которые в свою очередь сообщают пуле кинетическую энергию. Пуля в этом случае набирает упорядоченную кинетическую энергию за счет теплоты горячих газов (их «неорганизованной» кинетической энергии). Откуда же берут тепловую энергию сами молекулы? До этого взрыва порох был холодным твердым телом, содержащим запас «химической энергии». Он содержал в себе энергию первичного топлива — угля, дров, нефти. А это — молекулярная энергия, запасенная, если угодно, в силовых полях атомов. Представьте, что химическое соединение состоит из атомов, которые вопреки отталкивающим пружинящим межатомным силам посажены на свои места в молекуле и «защелка закрыта». Потенциальная энергия при этом запасается в «сжатых пружинах». Разумеется, химическая энергия — гораздо более сложная вещь, чем такая модель, но общая картина ясна: атомы и молекулы запасают энергию, которая высвобождается при одних химических изменениях и запасается при других. Большая часть горючих веществ высвобождает свою энергию при горении в кислороде, так что энергия их связана с силовыми полями молекул топлива и кислорода. Трудно указать, где она расположена, но количество ее достаточно определенно, поскольку при переходе энергии в другие формы мы можем измерять работу, т. е. получить произведение сила на расстояние, например, столько-то джоулей на каждый килограмм полностью сгоревшего топлива. Химическую энергию пороха или заряда фейерверочной ракеты локализовать легче. Вся она сидит там, внутри молекул горючего.

Пища — источник химической энергии

Пища — источник химической энергии. Пища — это топливо для людей и животных, она снабжает их химической энергией, которая переносится потоком крови к нуждающимся в ней мышцам. Мышцы могут преобразовывать часть получаемой энергии в механическую, поднимая грузы и делая другую полезную работу. Пища содержит в основном атомы углерода, кислорода и водорода. Рассмотрим, к примеру, молекулу простейшего сахара, глюкозы C6H12O6, поддерживающей работу мышц.

В процессе работы мышц и их отдыха, молекулы этого топлива расщепляются пополам, затем отщепляется шесть молекул H2O, а атомы углерода, соединяясь с атомами кислорода, поступающего из легких, дают шесть молекул CO2. Это вкратце сильно упрощенная картина химии жизни. Основные компоненты пищи — крахмал, сахара, жиры и белки — представляют большие молекулы, которые построены из меньших молекулярных структур, состоящих из атомов.

Эти небольшие комплексы синтезируются растениями, связываются ими каким-то способом, образуя растительные вещества, такие, как углеводы и целлюлоза. Животные, поедая растительную или животную пищу, расщепляют эти вещества и перераспределяют их составляющие так, чтобы образовывались нужные большие молекулы. Однако сами животные не синтезируют их частей. Энергию, необходимую для движения и другой деятельности, они получают при дальнейшем расщеплении некоторых молекулярных комплексов на углекислый газ и воду. Эта энергия первоначально была «усвоена» растениями из солнечного света и запасена при синтезе таких комплексов в виде энергии химических связей. Связывание и расщепление этих малых комплексов в пищеварительной системе животного — обычно дело нехитрое и не требует больших затрат энергии, оно быстро совершается микробами или ферментами. Большие молекулы в нашей пище содержатся в углеводах к целлюлозе, которые составлены из множества групп простых молекул сахара наподобие глюкозы, жиров с длинными цепями CH2 и белков — еще больших по величине и очень сложных молекул, необходимых для строительства и обновления тканей. Процесс, посредством которого химическая энергия превращается в теплоту тела или работу мышц, — в сущности, то же горение. При сгорании топлива в пламени происходит соединение его с кислородом с образованием воды и углекислого газа. Простейшее топливо нашего тела, такое, как глюкоза, соединяясь с кислородом, поступающим из легких, также образует воду и углекислый газ, но процесс идет гораздо медленнее и более хитрым путем, нежели простое горение в пламени; температура невелика, а выделение энергии — то же самое. Растения поглощают воду и CO2 из воздуха, соединяют их и создают сахар крахмал и целлюлозу — главные источники энергии животных.

Добывание животными химической энергии для мышц происходит примерно так: из пищи извлекаются простейшие молекулы сахара (точно так же, как и на химическом заводе извлекается спирт из древесной массы), которые запасаются в скоплениях, представляющих собой молекулы нерастворимого «животного» крахмала. Этот запас молекул крахмала расщепляется по мере надобности, поддерживает снабжение мышц сахаром. Когда мышцы сокращаются и производят работу, сахар в две стадии превращается в воду и углекислый газ. Из своей растительной пищи животные еще запасают жиры и «сжигают» их для согревания тела.

Затем все то, что растрачивается человеком и животными, вновь воссоздается растениями, и опять все готово к употреблению. Как же растения делают это? Мы не можем «обратить» действие пламени и «возродить» сгоревшие вещества. Как же растения ухитряются проделывать такой «синтез жизни», сжимая пружинки межмолекулярных сил и закрывая защелки? Поскольку «открывание защелки» приводит к выделению химической энергии, растения должны вкладывать ее при создании агрегата. Им необходимо как снабжение энергией, так и устройство, которое использовало бы ее для синтеза молекул H2O и CO2 в молекулы сахара и крахмала. Солнечный свет снабжает их энергией — порциями световых волн, так сказать, в «расфасованном по пакетикам» виде, а все операции производятся такими «умными» молекулами растения, как зеленый хлорофилл. На солнечном свету зеленый лист растения поглощает CO2 и создает крахмал. Таким образом, растительная и животная жизнь образует цикл, который начинается с воды, углекислого газа и солнечного света и заканчивается водой, углекислотой, теплом и механической энергией животных. Все наши машины, работающие на угле, нефти, ветре, падающей воде, все животные, потребляющие пищу, в конечном итоге получают свое топливо от Солнца.

Основные химические источники электроэнергии

Химические источники тока — это устройства и приборы которые в процессе химической окислительно-восстановительной реакции выделяют напряжение. Также они называются электрохимическими, гальваническими элементами. Основной принцип действия их основан на взаимодействии химических реагентов которые вступая, в реакцию друг с другом вырабатывают электроэнергию, в виде постоянного тока. Этот процесс происходит без механического или теплового воздействия, что является основными факторами играющими превосходящую роль среди других генераторов постоянного напряжения. Химические источники тока, сокращённо ХИТ, уже давно нашли применение не только в быту, но и на производстве.

Немного истории создания ХИТ

Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.

Первый химический источник электрического тока представлял собой емкость с соляным составом, в который было погружено две пластины из разных материалов. Одна из меди, другая из цинка. Именно это устройство в будущем, а конкретнее во второй половине девятнадцатого века, было применено при изобретении и создании марганцево-цинкового элемента внутри которого был тот же солевой электролит.

Принцип действия

Устройства вырабатывающее электрический ток содержит два электрода, которые помещаются между электролитом. Именно на их границе соприкосновения и появляется небольшой потенциал. Один из них называют катодом, а другой анодом. Все эти элементы вместе образуют электрохимическую систему.
Во время возникновения окислительно-восстановительной реакции между электродами один элемент отдаёт мельчайшие частицы электроны другому. Поэтому она и не может происходить вечно, а со временем просто теряются свойства каждого элемента этой цепи.
Электроды могут быть представлены в виде пластин или решёток из металла. После погружения их в среду с электролитом меду их выводами возникает разность потенциалов, которая именуется напряжением разомкнутой цепи. Даже при удалении хотя бы одного из электродов с электролита процесс генерации напряжения прекращается.

Читать еще:  Внешняя отделка дома из бруса: фото

Состав электрохимических систем

В качестве электролита используются следующие химические вещества:

  1. Водные растворы на основе щелочей, кислот, солей и т. д.;
  2. Растворы с ионной проводимостью на неводной основе, которые получены при растворении солей в неорганических или органических растворителях;
  3. Твердые соединения, содержащие ионную решетку, где один из ионов является подвижным;
  4. Матричные электролиты. Это особый вид жидких растворов и расплавов, которые находятся в порах твёрдого непроводящего элемента — электроносителя;
  5. Расплавы солей;
  6. Ионообменные электролиты с униполярной системой проводимости. Твёрдые тела с фиксированной ионогенной группой одного знака.

Классификация гальванических элементов и их подбор

Генераторы электрического тока получающегося во время химической реакции разделяются по:

  • Размерам;
  • Конструктивным особенностям;
  • Способу и реагенту, за счёт которого, и получается электроэнергия.

Все элементы вырабатывающее ток во время химической реакции делятся на:

  1. Заряжаемые, которые в процессе эксплуатации могут неоднократно заряжаться от источника постоянного тока, они называются аккумуляторами;
  2. Не заряжаемые, то есть источники одноразового использования которые после завершения химической реакции просто приходят в негодность и должны быть утилизированы. Попросту это гальванический элемент или батарейка.

Для того чтобы подобрать источник электроэнергии, основанный на химической реакции, нужно понимать его характеристики, к которым относятся:

  • Напряжение между анодом и катодом при разомкнутой цепи. Этот показатель чаще всего зависит от выбранной электрохимической системы, а также концентрации и вылечены всех составляющих;
  • Мощность источника;
  • Показатель силы тока;
  • Емкость;
  • Электротехнические показатели, то есть количество циклов заряда и разряда;
  • Диапазон рабочих температур;
  • Срок хранения между тем временем как элемент был создан и до начала его эксплуатации;
  • Полный срок службы;
  • Прочность, то есть защита корпуса от различных механических повреждений и влияний, а также вибраций;
  • Положение работы, некоторые из них работают только в горизонтальных положениях;
  • Надёжность;
  • Простота в эксплуатации и обслуживании. В идеале отсутствие необходимости малейшего вмешательства в работу в течение всего срока эксплуатации.

При выборе нужной батареи или аккумулятора обязательно нужно учесть его электрические номиналы такие как напряжение и ток, а также ёмкость. Именно она является ключевой для сохранения работоспособности, подключаемого к источнику прибора.

Современные химические источники тока и их применение

Современный быт человека тяжело приставить без этих мобильных генераторов энергии, с которыми он сталкивается в течение всей жизни, начиная с детских игрушек и заканчивая, допустим, автомобилем.
Сферы применения различных батареек и аккумуляторов настолько разнообразны что перечислить их очень сложно. Работа любого мобильного телефона, компьютера, ноутбука, часов, пульта дистанционного управления была бы невозможна без этого переносного и очень компактного устройства для создания стабильного электрического заряда.
В медицине широко используются источники химической энергии при создании любого аппарата, помогающего человеку полноценно жить. Например, для слуховых аппаратов и электрокардиостимуляторов которые могут работать только от переносных источников напряжения, чтобы не сковывать человека проводами.
В производстве применяются целые системы аккумуляторных батарей для обеспечения напряжением цепей отключения и защит в случае пропадания входящего высокого напряжения на подстанциях. И также широко применяется это питание во всех транспортных средствах, военной и космической технике.
Одним из видов распространённых батарей являются литиевые источники электрического тока, так как именно этот элемент обладает высоким показателем удельной энергии. Дело в том что только этот химический элемент, оказывается, обладает сильным отрицательным потенциалом среди всех известных и изученных человеком веществ. Литий-ионные батареи выделяются среди всех остальных элементов питания по величине вырабатываемой энергии и низким габаритам, что позволяет применять их в самых компактных и мелких электронных устройствах.

Способы утилизации химических источников энергии

Проблема утилизации разных по габаритах химических источников напряжения является экологической проблемой всей планеты. Современные источники содержат в себе до тридцати химических элементов которые могут нанесите ощутимый вред природным ресурсам, поэтому для их утилизации разработаны целые программы и построены специализированные цеха по переработке. Некоторые методы позволяют не только качественно перерабатывать эти вредные вещества, но и возвращать в производство, тем самым защитив окружающую среду. В целях извлечения цветных металлов из батарей и аккумуляторов в настоящий момент разработаны и применены в цивилизованных странах, следящих и заботящихся об окружающей среде, целые пирометаллургические и гидрометаллургические комплексы. Самый же распространённый способ утилизации отработанных химических источников тока является метод, работающий на соединении этих процессов. Главным его достоинством считается высокая степень извлечения с минимальным количеством отходов.
Этот метод пирометаллургической, гидрометаллургической и механической переработки включает в себя восемь основных стадий:

  1. Измельчение;
  2. Магнитная сепарация;
  3. Обжиг;
  4. Дополнительное измельчение;
  5. Выделение крупных и мелких элементов с помощью грохочения;
  6. Водное очищение и выщелачивание;
  7. Сернокислотное выщелачивание;
  8. Электролиз.

Организация правильного сбора и утилизации ХИТ позволяет максимально уменьшить негативное влияние как на окружающую природу, так и на здоровье самого человека.

Видео о химических источниках тока

Химические источники электрической энергии

Химические источники электрической энергии

Химическими источниками электрической энергии это устройства, превращающие химическую энергию какой-либо реакции в электрическую. Для такого превращения необходимо, чтобы процессы, связанные с изменением зарядов у электродов (т. е. окислительный и восстановительный процессы), были разделены пространственно, и электроны проходили через внешнюю цепь.

Примером подобного устройства может служить медно-цинко вый источник электрической энергии, предложенный Даниелем и Якоби в 1836 г. Медь, погруженная в раствор медного купороса, отделена диафрагмой от цинка, погруженного в раствор цинкового купороса:

При работе элемента цинк переходит в раствор, отдавая электроны: Zn → Zn 2+ + 2e. Электроны по внешней цепи проходят к меди, на медном электроде из раствора выделяется медь: Cu 2+ + 2e → Сu. Поток электронов, т. е. электрический ток во внешней цепи, может быть использован для работы, что и является целью применения ХИЭЭ. На цинковом электроде происходит реакция окисления, а на медном — реакция восстановления. Цинковый электрод несет отрицательный заряд, а медь — положительный. Химическая реакция, протекающая в медно-цинковом элементе, может быть записана следующим образом:

В электротехнике условно принято считать направление электрического тока обратным направлению движения электронов во внешней цепи (рис 2, а). Анодом служит электрод, на котором идет окислительный процесс, катодом — электрод, на котором идет восстановление.

Для регенерации активных веществ можно после работы медно-цинкового элемента подвести к нему ток от внешнего источника электрической энергии. Направления движения ионов и электронов станут обратными (рис. 2,6). Следует отметить, что хотя окислительный и восстановительный процессы поменяются местами, знак заряда электродов сохранится (медь — плюс; цинк — минус).

Если бы мы не разделяли процессы на электродах пространственно, а, например, опустили палочку цинка в раствор медного купороса, то реакция все равно бы прошла, но химическая энергия процесса превратилась бы не в электрическую, а в тепловую и была бы истрачена на нагрев раствора. Количество тепла, которое выделяется при реакции, и количество электрической энергии, которое может быть от нее получено при пространственном разделении окислительного и восстановительного процессов, связаны между собой уравнением Гиббса —Гельмгольца.

Рис. 2. Схема движения ионов и электронов при работе медно цинкового элемента.

При работе элемента Даниеля — Якоби количество энергии, переходящей в электрическую, меньше величины теплового эффекта реакции. Элемент разогревается, и часть энергии теряется. Температурный коэффициент элемента Даниеля — Якоби равен —3,59 • 10 -4 в /град. Тепловой эффект реакции

равен ∆Н = —55 189 кал.

Известны элементы, у которых температурный коэффициент положителен, при работе они охлаждаются и поглощают тепло из внешней среды. Получаемое в них количество электрической энергии больше, чем соответствует расчету по формуле Томсона.

Химические источники электрической энергии бывают одноразового и многократного действия. ХИЭЭ одноразового использования называются первичными элементами, а многократного действия вторичными элементами или аккумуляторами. Иногда первичные элементы называют просто «элементами» или «гальваническими элементами». Аккумуляторами могут служить только такие химические источники электрической энергии, основные процессы в которых протекают обратимо.

Вещества, израсходованные в процессе протекания реакции, дающей электрическую энергию, должны регенерироваться при пропускании через разряженный аккумулятор электрического тока от постороннего источника электрической энергии. Направление тока внутри аккумулятора при заряде будет обратным имевшемуся при разряде, на отрицательном электроде реакция окисления заменяется реакцией восстановления, а на положительном электроде реакция восстановления заменяется реакцией окисления. Таким образом, в аккумуляторах запас химической энергии, истраченной на получение электрической энергии при разряде, возобновляется при заряде.

Так как напряжение одного отдельного первичного элемента или аккумулятора очень невелико— они в большинстве случаев применяются последовательно соединенными по несколько штук. В таком виде ХИЭЭ называют «батареей».

Электродвижущая сила и напряжение при разряде

Основной характеристикой химических источников электроэнергии является их электродвижущая сила, т. е. разность потенциалов электродов, измеренная при отсутствии тока во внешней цепи.

Для практики более важной величиной, чем э. д. с, является напряжение химического источника электрической энергии при замкнутой внешней цепи.

Напряжение при разряде меньше э. д. с. по двум причинам: во первых, потенциалы электродов при отборе тока .от ХИЭЭ заметно отличаются от тех, которые имеют место при разомкнутой внешней цепи и во-вторых, часть э. д. с. теряется на преодоление внутреннего сопротивления элемента. Это можно выразить формулой:

V = φ a — φ кIr = IR

где φ a , φ к— потенциалы электродов при отборе тока; I — ток разряда; r — внутреннее омическое сопротивление ХИЭЭ; R — внешнее сопротивление (нагрузка) при разряде.

Потенциалы электродов при работе химического источника электрической энергии (разряде или заряде) отличаются от потенциалов, измеренных при разомкнутой внешней цепи, на величину, называемую э. д. с. поляризации:

где Епол — э. д. с. поляризации.

Внутреннее сопротивление ХИЭЭ

Напряжение при разряде (заряде), кроме поляризации электродов, зависит также от падения напряжения на преодоление внутреннего омического сопротивления ХИЭЭ. Последняя величина слагается из омического сопротивления проводников первого рода (электродов), электросопротивления электролита и сепараторов. При разряде малыми плотностями тока падение напряжения внутри ХИЭЭ не имеет значения, но при больших плотностях тока оно может оказаться заметным. Например, в свинцовом автомобильном аккумуляторе омическое сопротивление электролита и сепараторов при комнатной температуре приблизительно равно 0,006 ом на 1 дм 2 площади электродов. При плотности тока разряда 12 а/дм 2 падение напряжения составит около 70 мв, т. е. около 3,5% от э. д. с. аккумулятора.

На практике часто представляет интерес произвести приближенные расчеты напряжения при разряде в зависимости от нагрузки ХИЭЭ. Пользуются иногда условной величиной внутреннего сопротивления ХИЭЭ, характеризующей разницу между э. д. с. и напряжением при разряде, происходящую как от поляризации, так и от падения напряжения на преодоление внутреннего омического сопротивления. Тогда:

где V — напряжение, в; Е — электродвижущая сила, в; I— ток разряда, a; R — условное внутреннее сопротивление ХИЭЭ.

Величина К является грубо приближенной, так как омическая составляющая условного внутреннего сопротивления не зависит от нагрузки, а поляризация резко меняется при изменении плотности тока разряда. Величину К находят, производя несколько кратковременных разрядов ХИЭЭ различными токами и принимая среднюю величину. Внутреннее омическое сопротивление ХИЭЭ в принципе можно определить путем замеров переменным током, но, так как эта величина очень мала, результаты получаются ненадежными.

Для вычисления К существуют эмпирические формулы, однако они дают удовлетворительные результаты только в частных случаях. При точных расчетах пользоваться величиной К не рекомендуется, а необходимо произвести экспериментальное определение величины напряжения в зависимости от нагрузки ХИЭЭ.

Емкость и энергия ХИЭЭ

Емкостью ХИЭЭ называют количество электричества, которое можно от него отобрать при разряде в определенных условиях. Для аккумуляторов различают емкость при разряде и при заряде. Емкостью при заряде называют количество электричества, которое требуется израсходовать при заряде аккумулятора в данных условиях.

Емкость при заряде, как правило, больше емкости при разряде, так как часть тока заряда теряется на побочные процессы. Емкость ХИЭЭ зависит от количества заложенных в них активных веществ и степени их использования. Использование активных материалов обычно тем лучше, чем ниже плотность тока разряда и чем выше температура. Повышение температуры имеет некоторый предел, выше которого нормальному использованию ХИЭЭ препятствуют усиливающиеся побочные процессы.

Энергия ХИЭЭ выражается произведением его емкости на среднее напряжение.

Для аккумуляторов отдачей по энергии η называют отношение энергии, отданной при разряде, к энергии, полученной при заряде.

Для сравнения различных типов ХИЭЭ пользуются удельными величинами: емкостью, энергией или мощностью, отнесенными к единице веса или объема ХИЭЭ.

Саморазряд и сохранность ХИЭЭ

Активные материалы ХИЭЭ частично расходуются и на бесполезные побочные процессы. К таким процессам относятся, например, утечки тока через случайные замыкания в ХИЭЭ, растворение электродов в элекролите и др.

Потери емкости, происходящие из-за вредных побочных процесс сов, называются саморазрядом, имеются некоторые специальные конструкции элементов, у которых саморазряд настолько велик, что электролит в них приходится заливать только перед самым на чалом работы. Например, в свинцово-цинковом элементе, приводи мом в действие путем заполнения раствором серной кислоты, бесполезно теряется при разряде 10—30% цинка, растворяющегося в серной кислоте с выделением водорода. Сохранность ХИЭЭ тесно связана с их саморазрядом. Сохранностью называют время, в течение которого ХИЭЭ годен к употреблению, т. е. сохраняет определенный запас электрической энергии.

Для аккумуляторов, кроме сохранности, важной характеристикой является также срок службы. Срок службы выражают либо во времени, в течение которого аккумулятор пригоден для разрядов и зарядов, либо в числе циклов заряда и разряда, в течение которых аккумулятор способен отдавать емкость не ниже предусмотренной для данного типа.

Применение химических источников электрической энергии и требования, предъявляемые к ним

Химические источники электрической энергии в настоящее время широко применяют в промышленности и быту. Это вызвано тем, что большое количество современных машин и аппаратов нуждается в автономных источниках электрической энергии, не связанных с неподвижными электрическими станциями.

Для промышленного применения ХИЭЭ должны обладать рядом свойств, редко встречающихся одновременно в одной системе. ХИЭЭ должны отвечать следующим требованиям:

1 ) иметь возможно большую э. д. с;

2) отдавать большие токи без резкого падения э. д. с, т. е. не сильно поляризоваться в процессе работы;

3) активные вещества должны иметь возможно малый эквивалентный вес и высокую степень использования;

4) обладать малым саморазрядом, хорошей сохранностью;

5) производство ХИЭЭ должно быть технологичным и доступным по цене.

Аккумуляторы, кроме того, должны иметь высокую отдачу по энергии и большой срок службы.

Выбор электрохимических систем для ХИЭЭ

Для получения ХИЭЭ с наибольшей э. д. с. следовало бы взять электроды, наиболее далеко отстоящие друг от друга в таблице стандартных потенциалов.

Очень высокой э. д. с. обладал бы элемент с электродами, изготовленными из лития и фтора, но осуществить его невозможно, так как эти вещества мгновенно вступают в реакции с водными растворами и водой.

В качестве материала для отрицательного электрода все щелочные металлы в чистом виде применить крайне трудно, так как они слишком энергично реагируют с водными растворами. При приведении в соприкосновение электродов из щелочных металлов с электролитом весь материал расходуется на химическую реакцию настолько быстро (со взрывом), что не удается отобрать во внешнюю цепь существенное количество электричества.

При замене водных растворов электролитов на неводные реакции щелочных металлов с электролитом замедляется, но соответственно снижается и электродный потенциал. Попытки использовать для отрицательного электрода магний или алюминий затруднены тем, что эти металлы находятся либо в пассивном состоянии и имеют потенциал значительно более положительный, чем соответствует стандартных потенциалов, либо при активации начинают слишком бурно реагировать с электролитом. Первичные элементы с электродами из магния все же удалось осуществить.

Наиболее распространены первичные элементы с отрицательным электродом из цинка. Применение цинка объясняется тем, что он не сильно поляризуется, дает хороший коэффициент использования металла и хорошо сохраняется.

Статья на тему Химические источники электрической энергии

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector